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Abstract — Efficient navigation and search in unknown 
environments for multiple objects is a fundamental challenge in 
robotics, particularly in applications such as warehouse 
management, domestic assistance, and search-and-rescue. The 
Multi-Object Search (MOS) problem involves navigating to a 
sequence of locations to maximize the likelihood of finding target 
objects while minimizing travel costs. In this paper, we introduce 
a novel approach to the MOS problem, called Finder, which 
leverages vision language models (VLMs) to locate multiple 
objects across diverse environments. Specifically, our approach 
introduces multi-channel score maps to track and reason 
multiple objects simultaneously during navigation, along with a 
score fusion technique that combines scene-level and object-level 
semantic correlations. We validate our approach through 
extensive experiments in both simulated and real-world 
environments. The results demonstrate that Finder outperforms 
existing multi-object search methods using deep reinforcement 
learning and VLM. Additional ablation and scalability studies 
highlight the importance of our design choices and show the 
system’s robustness with increasing number of target objects. 
Website: https://find-all-my-things.github.io/ 

I. INTRODUCTION 
In various real-world applications, robots need to efficiently 

identify and locate multiple objects to complete tasks. This is 
critical in domains such as such as warehouse management [1], 
construction inspection [2], and domestic [3], and retail 
assistance [4], [5]. This challenge is addressed by multi-object 
search (MOS) [6] which describes the problem of finding 
multiple target objects in an unknown environment, while 
minimizing the robot’s travel distance and search time [7].  

Existing MOS methods can be categorized into: 1) 
probabilistic planning [6], [8]–[10], and 2) deep reinforcement 
learning (DRL) methods [7], [11]–[17]. Probabilistic planning 
methods address uncertainty in object locations using Partially 
Observable Markov Decision Processes (POMDPs) to 
estimate belief states and plan robot actions under partial 
observability, while DRL methods train robots to explore 
environments by optimizing action selection using a reward 
function [18]. However, these methods are limited by: 1) 
inefficient exploration due to a lack of direct semantic 
modeling between target objects and the scene [15], and 2) 
poor generalizability due to the sim-to-real gap [16].  

Recently, large foundation models [19], such as vision-
language models (VLMs), and large language models (LLMs), 
have demonstrated strong common-sense knowledge and 
reasoning abilities. These models can address the limitations 

of existing MOS methods by explicitly modeling the semantic 
correlation between target objects and the environment, while 
also generalizing across environments. As a result, these 
models have been applied to single object search (SOS) tasks 
using either: 1) VLMs (e.g., CLIP, BLIP, etc.) to generate 
scene-level embeddings that capture the semantic correlations 
between the robot’s environment, and the target object [16], 
[20]–[23], to guide the robot towards regions with high target 
object likelihood; or, 2) VLMs/LLMs to generate scene 
captions that describe both the spatial layout and semantic 
details of the robot’s environment [24]–[30], which are then 
used to plan the robot’s actions. However, these SOS methods 
have limitations: 1) they cannot be directly applied to MOS, as 
they lack explicit mechanisms to track and reason about 
multiple objects simultaneously, and 2) scene-level 
embeddings are often noisy and coarse [31], which cannot be 
effectively applied in object-dense environments. In such 
cases, fine-grained, object-level embeddings are needed. 

In this paper, we introduce Finder, the first MOS approach 
that leverages VLMs to locate multiple target objects in 
various unknown environments, Fig. 1. Our key contributions 
are: 1) we introduce multi-channel score maps to 
simultaneously capture and track the semantic correlation 
between multiple target objects, the  environment, and objects 
within the environment, 2) we develop a score map fusion 
technique that combines scene-level correlations between the 
scene and target objects, with object-level correlations 
between the scene objects and target objects, to overcome the 
limitations of coarse scene-level embeddings, and 3) we 
conducted extensive simulation and real world experiments to 
validate Finder’s performance. We make our code available 
upon request on our website to encourage reproducibility and 
further research in this area. 
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Fig. 1. Finder utilizes a vision language model to address the multi-
object search problem for a mobile robot in any indoor environment. 
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II. RELATED WORKS 

Current object search methods for mobile robots can be 
categorized into: 1) probabilistic planning methods for MOS 
[6], [8]–[10] 2) DRL methods for MOS [7], [11]–[17], and 3) 
VLM methods for SOS [20]–[30], [32], [33]. 

A. Probabilistic Planning Methods (PP) for MOS 
Probabilistic planning methods for MOS account for 

uncertainty in object locations and robot perception by using 
probabilistic frameworks to estimate belief states and plan 
actions under partial observability [6]. These methods 
generally assumed no prior knowledge of object locations, 
requiring the robot to iteratively update its belief using noisy 
sensor data. POMDPs are commonly used to address the 
uncertainty and partial observability in MOS. Usages of 
POMDPs included: 1) structuring the belief space based on 
objects and object classes for belief updates across multiple 
objects [6], 2) using point clouds to construct a occupancy 
octree for occlusion-aware searches and continuous belief 
updates [8], 3) managing dynamic environments through 
belief tree reuses [9], and 4) reducing computational 
complexity by segmenting the search areas into regions [10]. 
Simulated experiments were conducted in 2D grid worlds [6], 
[10], and 3D indoor environments [8], [9]. Real-world 
experiments were conducted in indoor environments using 
robots such as Spot and Kinova MOVO [6], [8]. 

B. Deep Reinforcement Learning Methods (DRL) for MOS 
In DRL methods for MOS, the robot is trained to explore 

unknown environments and locate multiple objects by 
repeatedly interacting with the environment during offline 
training [7]. These methods used DRL frameworks such as 
Deep Q Networks (DQN) [11], Proximal Policy Optimization 
(PPO) [7], [12]–[15], [17], or hybrid approaches that combine 
classical SLAM with learned policies [16], to optimize the 
robot’s navigation action selection based on RGB-D inputs 
[7], [12]–[17], LiDAR [16], or graph-based data [11]. The 
outputs of the DRL policies included: 1) discrete navigation 
actions (e.g., go straight, turn right, etc.) [7], [11], [13]–[15], 
[17], 2) continuous navigation actions [12], or 3) navigation 
waypoints [16]. DRL methods were primarily evaluated in 
simulation environments using Matterport3D [7], [13]–[16], 
custom-built environments [11], Gibson [14]–[16] and 
iGibson [12], [17]. Some methods were validated on physical 
robots, such as LoCoBot [12], [16] or Toyota HSR [12], [17] 

C. Large Foundation Model Methods (LFM) for SOS 
LFM methods for SOS focus on enabling robots to navigate 

unknown environments by leveraging natural language 
descriptions and visual inputs [23]. These methods 
incorporate VLMs and LLMs to guide object search using 
semantic reasoning and multi-modal robot perception [30]. 
Namely, these methods utilize RGB [21], [22], [25], [26], [33] 
or RGB-D [20], [23], [24], [27]–[30], [32] images from 
egocentric robot perspectives, to detect target objects using 
open-vocabulary models (e.g., GroundingDINO [34], SAM 
[35]), followed by planning discrete actions such as moving 
forward or turning. The models used pre-trained VLMs such 
as CLIP [20], [21], [30], [33], GLIP [24], [25] Llama-Adapter 

[26], BLIP [22], [23], [28] as well as LLMs such as, GPT-4 
[26], GPT-4V [29] [30], DeBERTa [24], RoBERTa [27] for 
navigation reasoning and instruction parsing. Experiments 
were conducted in simulated environments such as Habitat 
[20], [29], [32] RoboTHOR [20], [24], [25], PASTURE [20], 
[21], [23], [24] HM3D [21]–[24], [26]–[28], [30] HSSD [28], 
Gibson [21], [23], [27] ProcTHOR-10k [29], [33], were 
commonly used to test performance in indoor settings. 
Experiments with real-world hardware, including LoCoBot 
[20] [32], iRobot [26], Turtlebots [25], [29], [30], Jackal [27], 
and Spot [23], further validated the proposed approaches in 
real-world scenarios. 

D. Summary of Limitations 
Probabilistic planning methods face computational 

inefficiency in scaling to large, complex environments due to 
the need to maintain and update belief states for multiple 
objects over extended planning horizons [6]. DRL methods 
are limited by 1) inefficient exploration, as they optimize 
navigation based solely on sensory inputs without directly 
modeling semantic correlations between target objects and the 
scene [14], and 2) poor generalizability, requiring extensive 
training data and resources that hinder transferring learned 
policies from simulation to real-world scenarios [16], [36]  

While LFM methods can generalize well in a zero-shot 
manner, they are limited by: 1) their focus on SOS, making 
them unable to track multiple objects simultaneously for 
MOS where objects may be semantically related [23], and 2) 
reliance on coarse embeddings obtained from LFMs that 
capture only scene-level correlation between target objects 
and the environment, missing fine-grained correlations 
between target objects with objects in the scene [20], [29]. 

To address these limitations, we propose Finder, the first 
VLM-based approach that introduces multi-channel maps to 
address the challenges of tracking multiple objects 
simultaneously for MOS, and a score fusion technique to 
capture both scene and object-level correlations. 

III. THE MULTI-OBJECT SEARCH PROBLEM FORMULATION 
The MOS problem requires a mobile robot to search for a 

list of objects in an unknown environment. The robot is 
equipped with an RGB-D camera and has a state x!(#) ∈ ℝ" 
at time #, where x!(#) = ((, *, +, ,	) represents its position 
and orientation. The environment consists of . static scene 
objects /sne = 01&! , 1&" , … , 1&#3 . The set of 4  static target 
objects to be located is denoted by /tgt = 01)! , 1)" , … , 1)$3, 
/tgt ⊆ /sne , where each object 1)%  occupies an unknown 
position x)% . The objective of the MOS problem is to 
minimize the cumulative distance travelled 6 required for the 
robot to locate all objects in /tgt given control inputs 7(#): 

min
*())

				6 = ; ‖ẋ!(#)‖	d#
-

.
, (1) 

where @ is the total time to complete the search. 

IV. THE FINDER ARCHITECTURE 
The proposed multi-object search architecture, Finder, is 

presented in Fig. 2. The goal is for the robot to find multiple 
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target objects in an unknown environment by exploring areas 
with the highest semantic correlation scores. These scores are 
based on the scene-level correlation between the target 
objects and the scene as well as object-level correlations 
between the scene objects and target objects. This allows the 
robot to explore regions that are semantically correlated with 
the target objects. The architecture consists of four main 
modules: 1) Object Detector, 2) Spatial Map Generator, 3) 
Score Map Generator, and 4) Exploration Planner. 

A. Object Detector 
The Object Detector module identifies whether a scene 

object or a target object is in the robot view from an RGB 
image A/01)  and depth image A2)  at time # . Specifically, 
YOLOv7 [37] is used to output class labels B3  (within the 
COCO [38] classes) and bounding boxes C3 from A/01) , [39]. 
Segmentation masks D) are generated using Mobile-SAM [35] 
from the RGB image A/01)  and bounding boxes C3. If a target 
object 1)% is detected, the closest point on the target relative 
to the robot is identified from A2)  and D). The closest point E3 
is then projected into 3D space using the pinhole camera 
model [40], [41], to obtain a target object waypoint w)& , 
which is passed to the Navigation Controller within the 
Exploration Planner. If a target object is not detected, the 
masks D) are passed into the Spatial Map Generator module.  

B. Spatial Map Generator 
The Spatial Map Generator module generates metric maps 

of the environment using two sub-modules: 1) the Occupancy 
Mapping, and 2) Semantic Mapping. The Occupancy 
Mapping sub-module generates an occupancy map M4) ∈
ℝ5×7 from depth image A2)  and odometry information H) at 
time #, updating as the robot navigates in the environment. 
Obstacles are identified by converting A2)  into a point cloud 
P), and projecting these points onto the occupancy map M4) . 
The Semantic Mapping module generates a semantic map 
M&) ∈ ℝ5×7  from the RGB and depth images A/01)  and A2) , 
respectively. Specifically, the segmentation mask D) for each 

detected object are projected onto a 2D map using the 
semantic mapping procedure in [42]. 

C. Score Map Generator 
We introduce the Score Map Generator module, consisting 

of two sub-modules: 1) the Scene-to-Object (StO) Score 
Mapping, 2) the Object-to-Object (OtO) Score Mapping, and 
3) Score Fusion. The StO Score Mapping generates scene-
level correlation scores to capture the semantic relationships 
between target objects and the scene. The OtO Score Mapping 
generates object-level correlation scores to capture the 
relationships between target objects and scene objects. 

1) Scene to Object Score Mapping 
The StO Mapping module generates a score map where 

each element represents the semantic correlation of a specific 
location with respect to each of the target objects, Fig. 3. 
Specifically, it takes as inputs A/01)  and outputs a multi-
channel StO score map J8→:tgt

) ∈ ℝ;×5×7 of the same spatial 
dimension as the occupancy map. The scene embedding e&< ∈
ℝ2 is obtained by applying BLIP2 [43], a VLM, to A/01) : 

e&) = VLM(A/01
) ). (2) 

Similarly, for each target object 1)% , target embeddings 
e)% ∈ ℝ

2are obtained by applying BLIP2 to the text prompt 
P)% representing the object’s name: 

e)% = VLMQP)% 	R , ∀1)% ∈ Ttgt. (3) 
The semantic correlation V(e&) , e)%) between the scene A/01)  

and each target object 1)% 	 is computed by the cosine 
similarity. We follow [23] by generating a cone-shaped 
confidence mask C) ∈ ℝ5×7  at each time step to represent 
the camera’s field of view (FOV). The confidence of each 
pixel is maximal at the optical axis with a value of 1 and 
decreases away from the optical axis based on cos=([/
([>?@/2) ∗ ^/2) . Pixels representing obstacles, identified 
from A2) , are assigned a value of 0 in C). Each channel in the 
scene-level score map J8→:tgt

) , namely J8→4)% 	
) ∈ ℝB×5×7,  

 

Fig. 2. The proposed Finder architecture consists of four modules: 1) Object Detector which identifies whether a scene/target object is present in the scene, 
2) Spatial Map Generator which generates an occupancy and semantic map for navigation, 3) Score Map Generator which generates a unified score map 
representing the combined scene-to-object score map and object-to-object score map, and 4) Exploration Planner which selects the next frontier or target 
waypoint to navigate towards. 



IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION  

corresponds to the score map for object 1)% , and can be 
obtained by scaling C) with V(e&) , e)%): 

J8→4)%
) = C) ⋅ V Qe&) , e)%R , ∀1)% ∈ Ttgt. (4) 

It is updated based on a weighted average of the current and 
previous values [23]: 

J8→4)%
) =

C) ⊙J8→4)%
) + C)CB⊙J8→4)%

)CB

C) + C)CB
, ∀1)% ∈ Ttgt, (5) 

where ⊙ is the Hadamard product. Similarly, the confidence 
map C) is updated as follows [23]: 

C) =
(C))= + (C)CB)=

C) + C)CB
. (6) 

2) Object to Object Score Mapping 
The OtO Score Mapping module generates a score map 

representing fine-grained, object-level correlations between 
target objects and scene objects, Fig. 3. Each element in the 
score map represents the cooccurrence score of a specific 
location in the scene. Specifically, a higher score represents 
the presence of scene objects that commonly appear with the 
target objects. It takes as inputs A/01)  and outputs a multi-
channel scene object to target object score map J:sne→:tgt

) ∈

ℝ;×5×7 of the same spatial dimension as M4) .  
We compute a cooccurrence matrix W ∈ ℝD×;  where 

f3E = V(e&& , e)%) ∈ W  represents the cosine similarity 
between the embeddings of the scene object 1&&  and target 
object 1)%. These embeddings are computed from Eq. 3. For 
each target object  1)%, the corresponding channel of the score 
map J:sne→4)%

) is computed by weighting each channel g of the 
semantic map,  M&,4-&

) , representing the presence of a scene 
object 1&& , with the cosine similarity V(e&& , e)%). This scales 
the contribution of each scene object by how semantically 
correlated it is to the target object. The OtO score map for 
each target object  1)% at each time step # is then given by:  

J:sne→4)%
) =h M&,4-&

)
	:./0

V Qe&& , e)%R , ∀1)% ∈ Ttgt. (7) 

3) Score Fusion 
The Score Fusion module introduces a score fusion 

technique that combines both scene- and object-level 
correlations into a unified score map to guide the robot 
towards regions of high target object likelihood. Specifically, 
it combines the multi-channel StO score map V8→4)%

)  and OtO 
score map V8→4)%

) . Specifically, the unified score map 

J8,:sne→:tgt
) ∈ ℝ5×7 is obtained by element-wise addition of 

V8→4)%
)  and J:sne→4)%

) , and then summing over the channels to 
obtain a combined score: 

J8,:sne→:tgt
) =h V8→4)%

)
Gtgt

+ J:sne→4)%
) . (8) 

 
Therefore, locations on the unified score map, Fig. 3, that 

are semantically relevant to multiple targets objects, and/or 
locations with scene objects that are semantically relevant to 
multiple target objects, will accumulate higher scores.  

D. Exploration Planner 
The Exploration Planner selects the next frontier k  or 

target object waypoint w)& to navigate towards. It comprises 
two sub-modules: 1) Frontier Selection, and 2) Navigation 
Controller. If no target is detected, the Frontier Selection sub-
module determines the next frontier k to explore. If a target 
object 1)& is detected by the Object Detection sub-module, 
then the Navigation Controller directly receives the target 
waypoint w)& and navigates towards it. When the distance 
between the robot and the detected target object is within a 
threshold ϵ, the target object is found, e.g., 1)%, the object is 
removed from the search list /tgt , e.g., /tgt = /tgt\{1)%} . 
When the search list is empty, the robot triggers “stop” action. 

1) Frontier Selection 
The Frontier Selection sub-module selects the next frontier 

p((, *) for the robot to explore using a utility function that 
takes as input the occupancy map M4)  and unified score map 
J8,:sne→:tgt
) . Frontier points are defined as the midpoint at each 

boundary separating the explored and unexplored areas [44]. 
Specifically, the goal is to select the frontier k  with the 
highest utility q(k), which is based on: 1) the score r(k), 
calculated from J8,:sne→:tgt

) 	 as the mean score within a fixed 
radius around each  frontier; and 2) the distance to each 
frontier 6(k). Thus, the total utility q(k) for each frontier is 
given by: 

q(k) = s ⋅ r + β ⋅ 6. (9) 
The frontier k with the highest utility score is passed into the 
Navigation Controller. 

2) Navigation Controller 
The Navigation Controller sub-module generates robot 

control actions 7  using either the target object waypoint 
w)& from the Target Object Detection sub-module, or the 
frontier k from the Frontier Selection sub-module. We used 
a point goal navigation policy Variable Experience Rollout 
(VER) [45] pretrained in [23]. Robot actions include “move 
forward”, “turn left”, “turn right”, and “stop”.  

V. EXPERIMENTS 
We conducted four sets of experiments to evaluate the 

overall performance of Finder on the MOS task: 1) a 
comparison study against state-of-the-art (SOTA) methods in 
simulated building environments, 2) an ablation study to 
investigate the impact of StO and OtO score map on multi-
object search efficiency, 3) a scalability study to evaluate the 
impact of increasing the number of search targets on 

 
Fig. 3.  Overview of the Unified Score Map generation process. 
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exploration time, and  4) a sim-to-real study in an indoor 
multi-area building environment to evaluate the 
generalizability of Finder to real-world environments. 

A. Simulation Comparison Study 
We compared Finder against SOTA methods using the 

Habitat simulator [46] on two datasets consisting of high-
resolution 3D scans from real-world buildings: HM3D [47], 
and MP3D [48]. For both HM3D and MP3D datasets, we ran 
1000 episodes per method. At the beginning of each episode, 
the robot was spawned at a random location inside the 
environment and given a list of 3 target objects. An episode 
terminated if the robot triggered “stop” or the total number of 
time steps exceeded 500. 
1) Procedure: We used two performance metrics for these 
experiments: 1) success rate (SR) to measure the percentage 
of successful episodes where the robot found all target objects, 
and 2) multi-object success weighted by normalized inverse 
path length (MSPL), based on SPL [49], which measures 
multi-object search efficiency. MSPL is calculated by: 

MSPL =
1
v
h  

"

3HB
V3

ℓ3
max(P3 , ℓ3)

, (10) 

where v  denotes the number of episodes, V3  is a binary 
indicator of success of episode g , ℓ3  denotes the optimal 
shortest path length from the start location to all target objects, 
and  P3 denotes the actual robot path length. 
2) Comparison Methods: We compared against the following 
three sets of methods: DRL, VLM, and Lower and Upper 
Bounds.  

a) DRL method 
In terms of DRL methods, we evaluated our approach 

against a seminal work in MOS.  
Multi-Object Navigation (MultiON) [7]: MultiON uses 
RGB-D images, a goal vector, and a metric map as inputs. The 
model uses a ConvNet to process visual inputs and a GRU [50] 
to maintain memory of the robot’s state for action generation. 

b) VLM methods 
In terms of VLM methods, we compared Finder against 

four methods that use visual or language embeddings to guide 
the search process. The following methods were selected as 
they used the same sensor input as ours, are open sourced, and 
widely recognized in the research community. These methods 
were originally designed for SOS, we adapted them for MOS 
by searching for the target object from /tgt sequentially. 
CLIP on Wheels (CoW) [20]: CoW constructs a metric map 
from RGB-D images for frontier exploration and uses CLIP 
to localize the target object. 
Leveraging Large Language Mode ls for Visual Target 
Navigation (L3MVN Zero-Shot) [27]: L3MVN (Zero-Shot) 
builds a semantic map from RGB-D inputs and uses LLMs to 
score frontiers from the semantic map for waypoint selection. 
L3MVN (Feed-Forward) [27]: L3MVN (Feed-Forward) 
uses a feed-forward network to predict frontiers from the 
semantic map based on LLM embeddings. 
Vision-Language Frontier Maps (VLFM) [23]: VLFM 
generates a value map based on the cosine similarity between 
the RGB observation and the target object for frontier 
selection. 

c) Lower and upper bound methods 
 We compared against a lower and upper bound approach to 
evaluate Finder’s performance in relation to baseline and 
optimal strategies. 
Random Walk: The robot randomly selects a navigation 
action at each timestep. It serves as the lower bound approach. 
Oracle: Oracle plans an optimal shortest path to all the target 
objects given access to the ground-truth of the object locations 
and the map. It serves as an upper bound approach. 
3) Results: The results of comparison study are presented in 
Table I. Finder outperformed Random Walk, MultiON, CoW, 
L3MVN, VLFM in terms of SR and MSPL on both HM3D 
and MP3D datasets. Finder achieved higher SR and MSPL 
than CoW because CoW only used VLMs to localize the 
target object. Specifically, CoW did not incorporate reasoning 
about frontier selection based on the semantic relationship 
between the scene and the target, leading to less efficient 
object searches. Similarly, Finder outperformed L3MVN by 
integrating visual observations and generating a unified score 
map, while L3MVN relied solely on language semantic priors. 
In comparison to VLFM, Finder’s higher performance is 
attributed to its consideration of both scene-level and object-
level correlations between the environment and the target 
object. On the MP3D dataset, Finder also outperformed 
MultiON, which used predefined cylinders as target objects, 
disregarding semantic relationships with the robot’s 
environment. Finder achieved lower SR and MSPL in the 
MP3D dataset compared to the HM3D dataset because part of 
the scenes in the MP3D dataset are larger indoor 
environments. They require longer travel time for all target 
objects to be found, resulting in lower SR and MSPL given 
the same amount of maximum timesteps in each episode. 

B. Simulation Ablation Study 
We conducted an ablation study to investigate the impact 

of the different score maps used in Finder on multi-object 
search performance. Namely, we considered the following 
two variants: 1) Finder w/o Scene-to-Object score map: 
This variant does not include StO score map for frontier 
selection; and 2) Finder w/o Object-to-Object score map: 
This variant does not include OtO score map for frontier 
selection. We conducted 1000 episodes per method using the 
HM3D dataset, following the procedure in Section V. A. 

TABLE I 
COMPARISON BETWEEN FINDER AND SOTA METHODS 

Methods HM3D MP3D 
SR↑ MSPL↑ SR↑ MSPL↑ 

Random Walk 0.5% 0.0043 0.0% 0.0 

MultiON - - 23.9% 0.159 

CoW 14.2% 0.113 1.9% 0.059 

L3MVN (Zero-
Shot) 27.2% 0.187 6.6% 0.043 

L3MVN (Feed-
Forward) 28.1% 0.188 7.3% 0.051 

VLFM 32.4% 0.155 12.6% 0.104 

Oracle 100.0% 1.0 100.0% 1.0 

Finder (ours) 63.4% 0.389 55.4% 0.344 
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1) Results: The ablation study results are presented in Table 
II. The full Finder system achieved a SR of 63.4% and an 
average MSPL of 0.389. In contrast, removing the scene-level 
object correlations (Finder w/o StO) caused a decrease in 
performance, with an SR of 61.5%, and an MSPL of 0.364. 
Without the scene-level correlations, the robot disregarded 
areas that were semantically correlated to the target objects. 
For example, the robot might skip exploring a kitchen-like 
area when searching for a toaster. Similarly, removing object-
to-object correlations (Finder w/o OtO) further reduced the 
SR to 58.3% and the MSPL to 0.337. Without these 
correlations, the robot could not exploit the cooccurrence of 
objects that typically appear together. For instance, when 
searching for a TV, the robot might miss areas with a remote 
control or TV stand, which are often found near TVs. Thus, 
the absence of these score maps resulted in a degraded 
understanding of the semantic relationships between scene 
objects, target objects and the environment, leading to 
reduced search performance.  
C. Simulation Scalability Study 

1) Procedure: We evaluated the performance of Finder in 
terms of exploration time for increasing number of target 
objects. The objective is to investigate Finder’s efficiency as 
task complexity grows. We conducted 100 successful 
episodes for each experimental condition, varying the number 
of target objects from 1 to 8, using the HM3D dataset.  
2) Results: The results of scalability study are presented in 
Fig. 4. Overall, the average exploration time increased as the 
number of target objects increased. Exploration time 
increased from 67 steps to over 200 steps as the number of 
target objects exceeded one, indicating that the search task 
becomes significantly more complex when transitioning from 
SOS to MOS. However, the exploration time gradually 
converged to around 300 steps, with only marginal increases 
as the number of objects increased. This convergence 
suggests that Finder effectively explores a substantial portion 
of the environment within this time, enabling it to find all 
target objects efficiently. These results demonstrate Finder’s 
capability to scale in MOS tasks. 

D. Sim-to-Real Study 
We conducted real-world experiments in an object-dense 

multi-area indoor building environment with a total area of 
121.5 m2, Fig. 5(a)-(c). Namely, it consists of lounge area, 
study area, and a fireplace area. A TurtleBot was deployed 
with a Kinect camera for obtaining RGB-D image 
observations, Fig. 5(d). We used a set of target objects 
including garbage bin, fireplace, laptop, shoes, backpack, 
lamp, and umbrella. We sampled 3, 4, 5 objects from the set 
of target object lists for each trial to evaluate: 1) the 
generalizability of Finder in real-world environments, and 2) 
its ability to find increasing number of objects. For the 
navigation controller, we used A* as the global planner and 
Time Elastic Band Planner [51] as the local planner to 
generate robot velocities to navigate to the selected waypoint. 
The videos of Finder addressing the MOS task in both 
simulated and real-world environments are provided on 
https://find-all-my-things.github.io/ . 

VI. CONCLUSION 
In this paper, we introduced Finder, a novel VLM-based 

approach to address the MOS problem across various 
environments. The proposed method integrates multi-channel 
Scene-to-Object and Object-to-Object score maps generated 
from VLMs for effective waypoint selecting during object 
search. These score maps enable simultaneous tracking and 
reasoning about multiple objects, while leveraging both 
scene-level and object-level semantic correlations. Extensive 
experiments were conducted in simulated and real-world 
environments against SOTA methods. The results 
demonstrated that Finder outperformed existing multi-object 
search methods. Ablation studies further confirmed the 
effectiveness of our multi-channel score maps and fusion 
technique, while scalability study demonstrated Finder’s 
performance with increasing number of target objects. Future 
work includes extending Finder to handle dynamic objects 
and interactive search scenarios where objects may be hidden, 
moved or stored. 

TABLE II 
ABLATION STUDY 

 SR↑ MSPL↑ 
Finder w/o StO 61.5% 0.364 

Finder w/o OtO 58.3% 0.337 

Finder (ours) 63.4% 0.389 

 
Fig. 4. Average exploration time for increasing number of target objects. 

  
(a) Lounge Area (b) Study Area 

  
(c) Fireplace Area (d) Mobile Robot 

Fig. 5. Multi-room indoor environment with varying areas (a)-(c). Mobile 
robot equipped with RGB-D camera and odometry sensor. 

https://find-all-my-things.github.io/
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