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Abstract 

This thesis aimed to address the challenge of achieving high-performance multiple person 
tracking on mobile robots. To this end, the state-of-the-art MOT method, MOTR, was trained on 
a dataset captured by a moving camera for deployment on mobile robots.  Knowledge distillation 
was applied to maintain tracking performance, enabling real-time operation of the model. After 2 
days of training, the distilled model achieved an overall 52.8% MOTA, while the non-distilled 
model achieved 65.2% MOTA after 4 days of training. While the performance of the distilled 
model was significantly impacted by poor performance on a subset of the dataset, the results 
demonstrate the benefits of applying distillation to MOT training, achieving similar performance 
to the original model while significantly reducing training time.  
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1. Introduction 
Person tracking is a crucial task in various fields such as navigation in cluttered 

environments, crowd analysis of movement and behaviour, and human-robot interaction. It 

involves identifying and tracking individuals within a scene, even in crowded and cluttered 

environments. However, person tracking is a challenging task due to several factors such as 

occlusions, background complexity, and data association challenges [1]. Occlusions occur when 

the target is blocked and not visible, making it difficult to ensure accurate restoration of 

information when the target reappears [2]. The background complexity, such as changes in 

brightness, objects in the background, scene transformations, and shadows, adds an extra layer of 

difficulty to the tracking process. Additionally, data association, the process of matching the 

tracking target with the trajectory of prediction to get the correct track of the target, becomes 

more complex when multiple people need to be tracked in crowded environments, and this tends 

to decrease the efficiency of association algorithms [1]. These challenges make it difficult to 

implement person tracking algorithms in real-time robotic applications, as accurate methods 

often lack time efficiency, and efficient methods lack accuracy. Additionally, the time and space 

complexity of a model is even more critical when applied to mobile robots, as they do not have 

the same storage and computation capabilities as self-driving cars. 

 This research aims to advance the existing method of multi-object tracking (MOT) by 

utilizing knowledge distillation to reduce computation costs while maintaining the high 

performance of the original model. The state-of-the-art MOTR (Multiple-Object Tracking 

Transformer) model [12], a transformer-based MOT model, will be leveraged as the foundation. 

It has demonstrated better performance when compared to other transformer-based models such 

as TrackFormer[3] and TransTrack[4]. The initial objective is to reproduce the results of the 

MOTR model on general object tracking datasets, and then apply it to person tracking in mobile 

robot environments. Finally, student-teacher distillation will be applied in the MOT process. The 

small, lightweight “student” model is trained to mimic the output of a larger “teacher” model, 

with the goal of achieving similar performance while having a smaller model size and lower 

computational requirements. The types of networks for both the student and teacher will be 

investigated during the design phase. The same dataset will then be used to train and evaluate the 

distilled model, allowing for a comparison between the distilled and non-distilled models.  
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The contribution of this thesis will include: 1) proposing a multi-object tracking (MOT) 

model with knowledge distillation (KD), 2) evaluating the performance of the distilled and non-

distilled models, and 3) implementing the model in real-time simulations to verify its 

capabilities. This could help to address the compatibility issues that existing MOT methods often 

face when they are implemented in real-world applications. 
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2. Literature Review  
The literature review will first discuss two types of MOT: tracking-by-detection and joint 

detection and tracking, and their state-of-the-art algorithms. Then, usage of person tracking and 

knowledge distillation in robotics will be discussed.  

2.1 Multi-Object Tracking 

Multiple object tracking (MOT) is a continuously researched topic and has been applied 

to a wide range of tasks in robotics, such as navigation and self-driving of assistive mobile 

robots. It is typically divided into three main steps: detection, association, and state estimation. 

Object detection is used to identify multiple objects in each frame, and detections from different 

frames are compared to determine which detections correspond to which tracks. The tracker then 

uses the target objects to predict the position of the object in the next frame [5]. 

MOT is classified into two categories: tracking-by-detection (TBD) and joint detection 

and tracking (JDT). TBD trains object detection and re-identification (Re-ID) models in two 

separate systems. Many recent works are based on the SORT[6], DeepSORT[7], and JDE[8] 

approaches because they promise high accuracy. However, these SORT-like algorithms have 

difficulty maintaining correct identities over time (IDF1) while still achieving high accuracy. 

BoT-SORT[9], a state-of-the-art TBD approach, addresses this issue by integrating the 

Hungarian algorithm into ByteTrack[13], allowing it to handle a large number of objects and 

detections while still maintaining reasonable computational cost. 

However, BoT-SORT still has the fundamental issue of TBD: computation cost. 

Calculating the global motion of the camera can be time-consuming when large images need to 

be processed[9]. Separated appearance trackers have relatively lower running speed than joint 

trackers. Another common limitation among TBD algorithms is that pretrained object detectors 

may limit the potential classes that the algorithm can detect and track, and it is costly to compute 

both the detector and identity model during inference[14].  

Joint detection and tracking (end-to-end) methods combine detection and feature 

extraction into a single multi-task network. This can be achieved by adding identity embedding 

heads on top of existing detection networks such as MOTS[10] and RetinaTrack[11], or using 

tracking-by-attention, as introduced by TrackFormer. The performance of JDT is generally a bit 

more limited compared to TBD because it requires training on a larger network with fewer 
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training samples. However, this method is more preferred for real-time robotic applications 

because the algorithm has a shorter inference time as it detects and extracts features with a 

single, backbone-shared multi-task network, avoiding re-computation[27].  

An attempt to  improve on the existing state-of-the-art TBD method JDE (joint detection 

and embedding) was proposed in [14]. The author proposes a single network that simultaneously 

outputs detection results and the corresponding appearance embeddings of the detected boxes, 

thus increasing efficiency. This method successfully obtained near real-time performance (20.2 

FPS runtime on Nvidia Titan xp) while maintaining the same level of accuracy as the original 

TBD method. However, one limitation of JDE is that it has more ID switches than other methods 

when multiple people pass by the robot with large overlap, resulting in a lower IDF1 score [14].   

2.2 Person tracking in robotics 

Mobile robots are employed in person tracking to locate and follow individuals in real-

time. Some of the ways that robots are applied include surveillance, human-robot interaction, 

assistive robotics, and search and rescue. In order to track people, robots utilize a combination of 

sensors such as cameras, LIDAR, and ultrasonic sensors to detect and locate individuals[18]. 

Similar to MOT, person tracking methods can also be classified into two-step and end-to-end 

approaches. The first two-step approach was proposed in [15], where pedestrians are first 

detected from a scene image and then processed by a Re-ID network, but this method can be 

slow. On the other hand, end-to-end person tracking methods prioritize improving feature 

discrimination. The first end-to-end model with Faster R-CNN was introduced in [16], where the 

Re-ID is directly connected to Faster R-CNN with shared base layers. However, state-of-the-art 

search methods are not suitable for large-scale video monitoring scenarios where the robot needs 

to due to computational inefficiency. Therefore, research is being conducted to use knowledge 

distillation to simplify the process and reduce computation cost to make it more suitable for real-

time applications. 
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2.3 Knowledge Distillation 

 
Figure 1. Diagram of Knowledge Distillation [32] 

Knowledge distillation (KD) is a form of model compression that was first successfully 

demonstrated by [17]. It is widely used in neural networks to transfer the knowledge learned by a 

large set of models to a single smaller model for deployment under real-world constraints. Its 

properties allow for the deployment of large deep neural network models on edge devices with 

limited memory and computational capacity. Although various forms of knowledge are defined 

based on the purpose, one common characteristic of KD is symbolized by the student-teacher 

framework: the teacher provides knowledge and the student model learns it[24]. The softened 

probabilities outputted by a pre-trained teacher model contains more information than hard labels 

(e.g. one-hot encoding for class label) and provides better results when combined with softened 

and hard labels [19]. In MOT, a pre-trained Re-ID model serves as the teacher and the identity 

embedding branch acts as the student. 

KD can be applied in MOT to reduce the computation cost while maintaining the high 

performance of the original model. The proposed MOT model with KD can be implemented in 

real-time simulations to verify its capabilities and address the compatibility issues that existing 

MOT methods often face in real-world applications.  

To date, there has not been any extensive research on the application of KD to the MOT 

problem for mobile robots. An end-to-end KD framework that does not require ID annotation or 

sequential connection in training by [19]. It concludes that combining with hard labels does not 

significantly improve the performance but worsens MOTA (Multi Object Tracking Accuracy) 

because soften labels already contain sufficient information to teach the student model. 
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Therefore, ID annotations are not required in training, which allows the model to be trained on 

static autonomous images. 

2.4 Transformer-based MOT method 

 Many state-of-the-art models use CNNs for object detection and re-identification because 

it ensures high accuracy, but these methods are computationally intensive and do not scale well 

to large datasets. In contrast, transformer-based models have shown remarkable success in 

natural language processing (NLP) and image recognition tasks. They have also been applied to 

computer vision such as in image segmentation and object detection. The transformer 

architecture capture long-range dependencies and sequential information using self-attention 

mechanism. It is particularly well-suited for real-time MOT since it is highly parallelizable and 

the size is generally lighter than CNN-based models.  Recently, MOT systems were based 

around transformers to better exploit the spatial-temporal relations between the adjacent frames. 

This includes information about the object’s appearance previous extracted being useful in later 

tracking inference. Two transformer-based MOT systems will be explored: TrackFormer[3] and 

MOTR[12]. 

 

2.4.1 TrackFormer 

 
Figure 2. Workflow of TrackFormer 

 TrackFormer is an end-to-end trainable encoder-decoder Transformer architecture which 

introduces tracking-by-attention. The video frames are processed by a common CNN backbone 

(e.g. ResNet50) to extract features for each object in each frame. These features are then fed into 

a transformer network, which produces a set of object embeddings that capture the 

spatiotemporal relationships between the objects.  
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 The transformer decoder is composed of several layers of self-attention mechanisms, 

where each layer consists of a multi-head self-attention and a feedforward neural network. In the 

self-attention, the visual features are transformed into query, which is used to compute the object 

embeddings that capture the spatiotemporal relationships between the objects in the frame. 

In addition to the self-attention, the Transformer decoder network also utilizes encoder-decoder 

attention to incorporate information from previous frames. In the encoder-decoder attention, the 

decoder input queries are compared to the encoder outputs from all previous frames, and the 

attention map is used to weight the encoder outputs based on their similarity to the queries. This 

allows the decoder to attend to relevant information from previous frames when producing the 

object embeddings for the current frame. 

 The combination of self-attention and encoder-decoder attention allows the Transformer 

decoder network to model the spatiotemporal relationships between the objects in a video 

sequence. By attending to relevant information in previous frames, the decoder can produce 

object embeddings that capture the object interactions and movements over time, which is crucial 

for accurate object tracking.  

 One of the key advantages of TrackFormer is its ability to handle occlusion and other 

challenging scenarios. Self-attention allows the network to learn to attend to relevant objects and 

ignore irrelevant ones, even in crowded scenes Also, the use of object embeddings allows for 

more accurate track association, as the embeddings capture more information about the objects 

than traditional methods.  
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2.4.2 MOTR 

 
Figure 3. Workflow of MOTR 

MOTR is a fully end-to-end MOT framework that can implicitly learn the appearance and 

position variances in a joint manner. Similar to TrackFormer, the model also consists of a 

backbone network, and transformer-based encoder-decoder. 

The backbone network is a CNN based on the ResNet50 that extracts visual features from the 

input frames. The encoder is a series of transformer layers that process the visual features 

extracted by the backbone network. The decoder is responsible for making predictions about the 

location and trajectory of each object, as well as associating detections with the correct object 

trajectory using a set of learned attention weights. 

 While both MOTR and TrackFormer share similar architecture, MOTR achieves better 

performance on several benchmark datasets compared to TrackFormer. For example, on the 

MOT17 dataset, MOTR achieves MOTA of 61.2% compared to TrackFormer’s MOTA of 

59.8%. On the MOT20 dataset, MOTR achieves MOTR of 60.6% compared to TrackFormer’s 

MOTA of 58.8%, proving that MOTR is more effective approach for MOT [3][12].  

2.5 Evaluation Metrics 

 Two sets of metrics are typically used to evaluate the performance of MOT algorithms: 

the CLEAR metrics [29] and the VACE metrics [30]. The CLEAR metrics aim to measure the 

overall performance for all predicted trajectories and include metrics such as MOTA (multi-

object tracking accuracy) and MOTP (multi-object tracking precision). On the other hand, the 
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VACE metrics are used to describe individual metrics from different aspects, such as FP (false 

positives), FN (false negatives), FAF (false alarm per frame), MT (mostly tracked), ML (mostly 

lost), IDS (number of ID switches) and Frag (number of fragments). Among all these metrics, 

MOTA is considered to be the most reliable metric for evaluating MOT performance compared 

to the others [30], which is defined as the following:  

MOTA = 1	 − 	 ∑"#$"%$&'()∑*+
 [29] 

IDF1, or Identification F1, is a commonly used metric for evaluating the accuracy of 

tracking identification in multi-object tracking. Unlike MOTA, which focuses on the accuracy of 

object detection and association, IDF1 emphasizes the accuracy of track association. It 

accomplishes this by using a bijective mapping between predicted trajectories and ground truth 

trajectories to determine which trajectories are present. 

IDF1 is calculated by combining two other metrics: IDP (ID Precision) and IDR (ID 

Recall). IDP measures the percentage of correct track associations out of all track associations 

made by the algorithm, while IDR measures the percentage of correct track associations out of 

all possible tracks [1]. 

IDR = 	
IDTP

IDTP + IDFN 

IDP = 	
IDTP

IDTP + IDFP 

IDF1 = 	
IDTP

IDTP + 0.5	IDFN + 0.5	IDFP 

IDTP: Identity True Positives, IDFN: Identity False Negatives, IDFP: Identity False Positives [1] 

A high IDF1 score indicates that the algorithm can accurately identify and track objects over 

time, while a low IDF1 score suggests that the algorithm is struggling to make correct track 

associations. This is often used alongside other metrics such as MOTA and MOTP to assess the 

overall performance of a tracking algorithm. 
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3. Methods 

3.1 Datasets 

The ideal person detection dataset for this research must be collected indoors using a 

moving camera to fit the scope of the research. A moving camera is preferred over a static 

camera, as the research involves a mobile robot which is not static. A smaller dataset is preferred 

as the mobile robot has limited storage capacity and therefore cannot train on a large set. Three 

datasets were examined: the RGB-D Person dataset, Mobility Aids dataset, and 

InOutDoorPeople dataset. 

 
Figure 4. Sample images of RGB-D Person Dataset 

The RGB-D Person dataset[20] contains 3000 RGB-D images of walking and standing 

people acquired in a university hall from three static Kinect sensors. Despite the size of the 

dataset being the smallest of the three, it was not chosen because the data contains different 

levels of occlusions and since three cameras were used to take image of the same scene, tracking 

people across the three views will be needed, making it difficult to ensure higher accuracy. These 

were beyond the scope of this thesis, and therefore, this data is inappropriate and may affect the 

performance of MOT. 

 
Figure 5. Sample images of Mobility Aids Dataset 
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The MobilityAids dataset[21] contains over 17,000 RGB-D images collected in a hospital 

and facilities of the University of Freiburg, using a dynamic mobile robot equipped with a Kinect 

sensor. The purpose of the dataset was to recognize people with different mobility aids, it 

categorizes people according to the mobility aids they use such as people in wheelchairs, people 

with clutches, and people using walking frames. This dataset was not chosen because the aids 

can affect the detection since they are blocking the people, and multi-class detection is not the 

scope of this thesis.   

 
Figure 6. Sample images of InOutDoorPeople Dataset 

Finally, the InOutDoorPeople dataset[22] was collected by a moving mobile robot as it 

transitioned from indoor to outdoor environments in a single take. This dataset was chosen to 

evaluate the MOT model even though the transition of environments is not required, as the size 

was reasonable to be trained on a mobile robot, and most importantly, the images were collected 

by a moving camera which is a key component of this thesis. 

3.2 Data Preparation 

In order to prepare the InOutDoorPeople dataset for training the model, several pre-

processing steps were necessary to ensure that the data was in the appropriate format. The 

process was modified to fit the custom dataset, following MOTR GitHub repository [14].  

 Firstly, both the images and annotation files were reorganized into four distinct 

sequences, following the order specified in the sequence list. Then, empty frames with no people 

or annotations were removed to avoid high false positives. These sequences were then renamed 

in ascending order of integers, with sequence 0 through 2 designated as the train set, and 

sequence 3 as the test set. 
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Next, the annotations were processed in accordance with the desired format for the 

model, which followed the MOT Challenge’s submission guidelines. This involved saving the 

annotations in a file named "gt.txt" for each sequence, which required some degree of 

automation to generate. However, a manual check was necessary to ensure that the IDs were 

correctly assigned to each person. Label files were then generated using this ground truth 

information. 

Finally, the "labels_with_ids" directory was created, following the FairMOT style 

annotation. The directory consists of text files for each image frame with information on the size 

of bounding boxes. The file names match the image names so that the model can detect the 

correct people in the frame.  

3.3 Choosing state-of-the-art MOT Model 

 There are a few MOT models that are transformer-based: TrackFormer, TransTrack, 

MOTR, and TraDeS. Of these, a state-of-the-art model was selected based on the performance, 

size, and whether the model uses JDT or not.  The models were first sorted by which model is 

the most recent, and then comparing the performance on MOT17 [25], which was a common 

benchmark dataset.  

TrackFormer was the focus of the initial research. The model’s performance was first 

reproduced to ensure accurate implementation. However, while reproducing the model’s training 

to ensure accurate implementation, I decided to stop using this model because the codebase was 

hard to work with due to lack of documentations. Then, I moved forward to MOTR which was 

the latest transformer-based MOT model that has been published.  

3.4 Training TrackFormer and MOTR. 

 TrackFormer’s training result was reproduced on MOT17 using the python 

implementation provided by the author. The model was first pre-trained with the CrowdHuman 

dataset [26] using the provided checkpoint. Some modifications were made to the training 

process due to computation cost and compatibility issue with the GPU. The feature extraction 

model was changed from ResNet50 to ResNet18, and the number of epochs was also reduced 

from 50 to 15. 
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 MOTR was evaluated also in the same process as TrackFormer. Instead of MOT17, 

MOT15 [25] train set was used because MOT17 does not have test set available for public use. 

After successfully reproducing the performance, the model was trained on the InOutDoorPeople 

dataset. Here, training hyperparameters were adjusted to cope with number of available GPUs.  

3.4 Implementing Knowledge Distillation to MOTR 

 KD can be applied to several steps of MOT including object detection, tracking, and 

feature extraction. The teacher model can be a complex model that is trained on a large dataset. 

The student model can be then trained to mimic the teacher’s behaviours, but with fewer 

parameters and faster inference times. Of these, I decided to apply KD to feature extraction 

because it tends to be more computationally expensive and time-consuming compared to the 

other two processes. Feature extraction requires analyzing large amounts of data to extract 

relevant features for subsequent analysis and becomes more complex when working with high-

resolution images. Therefore, it is possible to reduce the computational resources required for the 

task by using a smaller and distilled model, while maintaining the accuracy of the features. On 

the other hand, distillation may not be as effective for object detection because modifying these 

may lead to changing the main features of the model, which is undesirable.  

A simple student-teacher distillation was implemented. To create a smaller model of 

MOTR, the backbone network of feature extraction was changed from ResNet50 to ResNet18.  

As the name implies, ResNet18 has 18 layers while ResNet50 has 50 layers, making ResNet18 a 

shallower and less deep network compared to ResNet50. Then, the student model was trained 

with the pre-trained model from teacher network.  
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4. Results and Discussion 

4.1 TrackFormer on MOT17 

 The table shows the results of experiments to reproduce TrackFormer on MOT17. Full 

training results of MOT17 is shown in Appendix. The same tuning parameters were used for 

both experiments.  

  

MOT17 MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ ID SW↓ 

Original 74.2% 71.7% 849 177 7431 78057 1449 

Obtained 54.6% 58.0% 445 535 4709 147126 1258 

Table 1.  Comparison of training results 

The overall performance was poorer than the original work. High FN represents the people 

present in the frame were not identified correctly, which led to low MOTA and IDF1.  

This was expected since these results were obtained under different constraints. The 

original work had stronger computational power (7 x32GB GPUs vs. 1 x 8GB GPU) and our 

model was trained with lesser epochs which significantly reduced the performance. Since the 

purpose of this experiment was to investigate the capability of the model, further fine-tuning was 

not conducted.  

 To visualize the training results the demo was also reproduced with a provided video 

sequence. The MP4 file was first converted into image frames and evaluated on the same model.  

      
Figure 7. Visualization of TrackFormer performance 

 

Regardless of the low accuracy, bounding box was assigned for each person and followed well 

even when occlusion occurs.  
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4.2 MOTR on MOT15 

 
Table 2. Results of MOTR on MOT15 

 
The table shows the training result on MOT15 train set using the pretrained model. The author 

did not provide their result on this dataset so direct comparison could not be done. However, low 

MOTA was expected when comparing the results obtained by other users [28]. The result looks 

promising regardless of the accuracy since the overall recall rate is very high (88.1% ), which 

implies the model can detect most of the people in the frame.  

Below. demo was also regenerated with the same pretrained model which shows bounding boxes 

and its accuracies even when the people are concentrated at one place (top-left). The model can 

also handle occlusion well because the bounding boxes recover with very high accuracy as soon 

as the two people walk by.  

 
Figure 8. Bounding boxes tracked by MOTR on the demo sequence 
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4.3 MOTR on InOutDoorPeople Dataset 

 Two tests were conducted: first was to evaluate InOutDoorPeople dataset on MOTR, and 

second was to train and evaluate on the custom dataset.  

 
Table 3. Pretrained model evaluated on InOutDoorPeople dataset 

 
Table 4. MOTR trained and evaluated on InOutDoorPeople dataset 

 Sequence 0 to 2 were used as train sets and sequence 3 was used as a test set. Training 

MOTR on InOutDoorPeople dataset took approximately 4 days to train 100 epochs using one or 

two Nvidia GeForce RTX 3070 GPUs depending on the availability.  

 The InOutDoorPeople dataset is a new dataset that the author’s model has not been 

trained on. Therefore, it is expected that the model’s performance on this dataset will be lower 

than its performance on the MOT17 and CrowdHuman datasets that it was trained on.  

The high overall recall rate in both results indicates that the model is good at detecting people in 

the images. However, it is important to note that the author’s model was trained n images 

collected by static cameras, which means it is more prone to tracking people at a stationary frame 

since these cameras capture images of people from a fixed position. This makes it easier for the 

model to detect and track people who are not moving or moving slowly.  

 As shown in the above tables, the visualization of the results shows that the model 

sometimes fails to detect people when their full body is not present in the image or when they are 

standing at the edge of the frame, leading to high FP. This could be due to the dataset did not 

have enough images that capture such scenarios. Therefore, the model may not have learned to 

detect people in these situations as well as it could have. Further optimization and training it on 

more diverse datasets could improve its performance.  

 High MOTA scores in Table 4 can be further indicative of the effectiveness of MOTR in 

tracking people. The relatively low FP and FN rates suggest that the model can accurately detect 
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people in the images, and it can re-track people successfully when occlusion occurs. This is 

important because occlusions are common in crowded scenes, where multiple people are moving 

near each other and can cause problems for tracking algorithms. High IDP and IDR indicate that 

the model accurately associated person detections over time and tracked all possible people in 

the scene.  

Below are some visualizations of tracking results with bounding boxes.  

 

 
Figure 9. Top: Pretrained model Bottom: trained on InOutDoorPeople dataset.  

Since the top model was trained on more data, it can detect people better although their full 

bodies are not present. 
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4.4 Implementing Knowledge Distillation on MOTR 

 
Table 5. Distilled MOTR evaluated after 100 epochs 

The non-distilled model (teacher) from section 4.3 was used as the pretrained model for 

the distilled model (student). The training process for the distilled model took approximately 2 

days to train 100 epochs, using two Nvidia GeForce RTX 3070 GPUs.  

Although the overall performance of the distilled model was slightly poorer than that of 

the non-distilled model, some sequences preserved its performance when comparing sequence by 

sequence with Table 4. Sequence 0 and 2 maintained almost the same level of tracking accuracy 

as the teacher model. The student model identified and tracked correct people in the scene, which 

led to lesser FP and FN, as indicated by high IDR and IDP. However, for Sequence 1, there was 

a delay in detecting and following a newly appeared person, resulting in high false positive and 

false negative detections, depicted in Figure 10. It is possible that the visual characteristics of 

Sequence 1 were different from other sequences since more occlusions and a person’s full body 

was not present all the time as mentioned in Section 4.3.   

 
Figure 10. Detection results of teacher model (left) and student model (right) at frame 607 of 

Sequence 1  

Further investigation is needed to understand the poor performance of the distilled model 

on the test set, particularly in Sequence 3 where detection failed even in well-lit environments 

with full body presence. One potential solution is to use a larger dataset for the teacher model 

since the current limited number of samples may not be representative of the diverse range of 

scenes that the model could encounter. By training the teacher model on a larger dataset, it could 

learn a wider range of appearance variations, which can in turn improve the distilled model's 
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ability to detect and track people in new and unfamiliar scenes. Detection results for the test set 

are compared in Figures 11 and 12.  

 

 

 
Figure 11. Detection results of teacher model (top) and student model (bottom) at frame 0 (left) 

of Sequence 3 
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Figure 12. Detection results of teacher model (top) and student model (bottom) at frame 357 of 

Sequence 3 

 
In Figure 11, only one bounding box was detected despite three people with full bodies being 

present in the frame. In Figure 12, the student model only detected 2 people while the teacher 

model detected 4 people. This discrepancy may be due to a change in illumination as the camera 

moved from indoors to outdoors, and the student model may not have been trained extensively 

enough to detect people at greater distances. 

4.5 Key Claims 

While the distilled model did not perform as well as the on-distilled model overall, it is 

important to note that the goal of distillation is not necessarily to surpass the original model’s 

performance, but rather to create a smaller and more efficient model that can be deployed in 

resource-constrained settings. Therefore, the slight drop in performance may be an acceptable 

trade-off for the benefits of model compression.   



 

 21 

5. Conclusion 
The thesis successfully demonstrated that distillation in multi-person tracking can help 

create smaller and more efficient models while still preserving the main performance metrics 

such as MOTA. These findings are particularly important for motile robot applications, where 

lightweight and computationally efficient models are often required to operate in real-time with 

limited resources. 

However, the challenges in tracking newly appeared people in crowds suggest that 

further analysis and improvements are needed to address these issues. To improve the 

performance of the distilled models, future work could involve fine-tuning the training 

parameters and using larger dataset to train the teacher model. Additionally, further experiments 

with different distillation methods are required to find the best approach for creating efficient and 

effective multi-person tracking models for mobile robots. 

To validate the performance of these models, it is necessary to test them in real-time 

scenarios, such as on mobile robot platforms operating in real-world environments. Further 

research could also explore the potential for integrating multi-person tracking with other 

applications such as human-robot interaction and social robotics.  
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Appendix A. Full result of TrackFormer evaluated on MOT17  
 

 
 


