

Goal

Develop a deep learning person detection architecture for mobile robots in human-centered environments which is robust under intraclass variations (e.g., occlusions, varying lighting, deformation).

Motivation -

Robots need to autonomous detect multiple, dynamic people in various human-centered environments to engage in human-robot interactions, for example:

- In grocery stores, service robots can be used to find and guide customers to products,
- In long-term care homes, they can search and locate residents to perform daily activities,
- In hospitals, they can provide directional guidance,
- In urban search and rescue (USAR), they can search for victims.

- **Contrastive learning** is an unsupervised framework which learns { through positive pairs (attraction) and negative pairs (repulsion)
- Video frames within a short time interval capture natural variations in occlusion, lighting, and pose deformation

Datasets:

- Mobility Aids (MA): contains multiple dynamic people in crowded hospital environment
- **USAR**: contains multiple static people/body parts in cluttered real-world environment
- InOutDoorPeople (IOD): multiple dynamic people in in/outdoor campus environments
- **Metrics:**
- **AP:** the mean average precision (mAP) where predictions with an Intersection over Union (IoU) > 0.5 are considered true positives
- **AP**₅₀: the averaged mAP over $IOU = \{0.5, 0.55, ..., 0.95\}$

Comparison Results

oompanson nesa								
Methods	MA		USAR		IOD		Mem	FPS
	AP	AP ₅₀	AP	AP ₅₀	AP	AP ₅₀		
		Compari	son of Det	ection Me	thods			
TimCLR + MYOLOv4	49.20	75.30	20.20	44.40	63.40	96.70	1.4	41
MYOLOv4	45.20	71.40	18.30	40.60	60.80	92.90	1.4	41
MEfficientDet	45.71	74.54	17.80	40.45	60.68	92.06	2.0	24
	Comp	arison of	Contrastiv	ve Pretrain	ing Methc	ods		
TimCLR + MYOLOv4	49.20	75.30	20.20	44.40	63.40	96.70	-	-
SimCLR + YOLOv4	43.40	70.20	14.50	28.30	58.30	92.40	—	_
Barlow + YOLOv4	43.60	70.30	13.70	32.10	60.50	92.10	-	_
MoCo v3 + YOLOv4	44.40	70.11	15.10	34.20	60.50	91.90		

Experiments-

Robots Autonomously Detecting People: A Multimodal Deep Contrastive Learning Method Robust to Intraclass Variations

 Human-centered environments are typically crowded with people, or cluttered with objects (results in occlusions) Human-centered environments have variable lighting due to natural and artificial lighting sources (or lack thereof) • Human body is articulated, and the presence of different types of clothing can result in deformation

- In the first and third scene, only our method identified all people In the second scene, only our method detected the partially
- occluded right foot

Challenges -

Varying lighting

Deformation

Occlusions

Occlusions

We present a two-stage multimodal DL person detection architecture for mobile robots consisting of:

Our main contributions include:

Authors

Angus Fung (Student Member, IEEE) Beno Benhabib Goldie Nejat (Member, IEEE)

-Novel Contributions -

a unique pretraining method Temporal Invariant Multimodal Contrastive Learning (TimCLR)

2) a Multimodal YOLOv4 (MYOLOv4) detector for finetuning.

a new pretraining method, *TimCLR* which uniquely incorporates intraclass variations by generating multimodal image pairs from sampling video frames within a short temporal interval, thereby capturing natural variations in occlusion, pose and lighting 2) we uniquely incorporate contrastive learning within a fusion backbone network to contrast image features thereby capturing cross-modal invariances.

Conclusion

• Our multimodal person detection architecture for mobile robots learns person features which are invariant to natural variations in the environment such as person/body part occlusions, pose deformations, and varying lighting.

• Our new pretaining method *TimCLR* + *MYOLOv4* outperforms the existing detection methods in finding people in crowded and/ or with varying lighting hospitals, university campuses, and cluttered USAR environments.

 Future work includes integrating our detection architecture within a mobile robot for real-time person detection in varying human-centered environments.

