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Abstract—Existing navigation methods are primarily designed 

for specific robot embodiments, limiting their generalizability 
across diverse robot platforms. In this paper, we introduce X-
Nav, a novel framework for cross-embodiment navigation where 
a single unified policy can be deployed across various 
embodiments for both wheeled and quadrupedal robots. X-Nav 
consists of two learning stages: 1) multiple expert policies are 
trained using reinforcement learning with privileged 
observations using a wide range of randomly generated 
embodiments; 2) a single general policy is distilled from the 
expert policies via navigation action chunking with transformer 
(Nav-ACT). The unified policy directly maps visual and 
proprioceptive observations to low-level control commands, 
enabling generalization to novel robot embodiments. Simulated 
experiments demonstrated that X-Nav can effectively achieve 
zero-shot transfer to unseen embodiments and unseen 
photorealistic environments. An ablation study is conducted to 
evaluate the design choices of X-Nav. Furthermore, a sim-to-real 
study was conducted to validate the generalizability of X-Nav to 
real-world environments.  
 

I. INTRODUCTION 
obot navigation in diverse and challenging 
environments is crucial for mobile robots to be able to 
perform tasks such as detection and search [1], [2], 

[3], exploration in unknown environments [4], [5], and 
assistive services in healthcare settings [6]. However, existing 
robot navigation methods are typically designed for very 
specific robot embodiments that consider only their mobilities, 
degrees-of-freedom (DOFs) and sensory configurations [7]. 
This embodiment-specific design limits generalization to robot 
deployment across multiple robot embodiments. In this paper, 
we address the problem of cross-embodiment navigation 
where a single generalized navigation policy can be deployed 
on a wide range of robot embodiments. In particular, we 
consider the visual point-goal navigation problem where a 
mobile robot is required to navigate to a target goal position 
using visual observations (i.e., depth images) obtained from an 
onboard camera [8]. 

Cross-embodiment navigation methods have mainly used 
either imitation learning (IL) [9], [10], [11], [12], [13], [14], 
[15], or reinforcement learning (RL) [16], [17], [18], [19], 
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[20], [21]. In particular, IL methods learn a navigation policy 
from datasets collected from heterogeneous robot platforms 
(e.g., TurtleBot2, Jackal, Spot) and use visual observations to 
extract spatial and embodiment features to predict robot 
waypoints or velocities. On-the-other-hand, RL methods learn 
to navigate by training on diverse robot embodiments, 
including randomly generated robots or off-the-shelf robots. 
They use proprioceptive (e.g., joint angles, joint velocities) 
and/or visual observations as input to implicitly infer 
embodiments for robot velocities or joint position generation. 
However, these aforementioned methods are limited by 1) 
their reliance on embodiment-specific modules to track the 
predicted waypoints or velocities [9], [10], [11], [12], [13], 
[14], [15], which is particularly challenging to achieve 
especially for quadrupeds due to the high DOFs [22]; 2) their 
focus on locomotion where the methods only learn to track  
given velocity commands but lack the capability to plan 
velocities for visual navigation [18], [19], [20], [21]. 

To address the above limitations, in this paper, we propose 
X-Nav, a novel two-stage learning framework for cross-
embodiment navigation. Our approach is end-to-end that it 
directly maps from visual and proprioceptive observations to 
low-level control commands (i.e., velocities for wheeled 
robots, joint positions for quadrupeds), without relying on 
embodiment-specific modules to plan velocities/waypoints or 
to track them. In the first stage, we use RL with privileged 
observations to train multiple expert policies on randomly 
generated robot embodiments, enabling each policy to acquire 
navigation skills optimized for a group of similar robot 
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Fig. 1. X-Nav trains a single general navigation policy using randomly 
generated robot embodiments, which can be deployed across a variety of 
commercially available robots. X-Nav is the first end-to-end cross-
embodiment navigation model for both wheeled and quadrupedal robots. 
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embodiments (e.g., wheeled robots, quadrupeds). In the 
second stage, the expert policies are distilled into a single 
general policy using a transformer model with a unified 
observation and action space. The key contributions of this 
work include:  

1) the development of the first end-to-end cross-
embodiment navigation approach for both wheeled and 
quadrupedal robots.  

 2) the introduction of a novel two-stage learning 
framework that integrates expert policy learning with general 
policy distillation, enabling zero-shot transfer to unseen robots 
and real-world environments.  

II. RELATED WORKS 
We discuss the existing works on cross-embodiment 

navigation that have used: 1) imitation learning (IL) [9], [10], 
[11], [12], [13], [14], [15] and 2) reinforcement learning [16], 
[17], [18], [19], [20], [21]. 

A. Imitation Learning-based Methods 
Imitation learning-based methods learn a cross-embodiment 

navigation policy from training on datasets collected from 
heterogeneous robot platforms. These methods take as input 
robot current visual observations (i.e., RGB images) and goal 
images [9], [10], [11], [12], [13], [14], [15] and use visual 
encoders such as custom ConvNets [10], MobileNetv2 [11], 
[23], EfficientNet [9], [12], [13], [24], ResNet [14], [25], 
DINOv2 [15], [26] to extract spatial features from the input 
images. Fully connected layers (FCLs) [10], [11], [15], 
transformer blocks, [9], [12], [13], [14], [27], diffusion action 
heads [9], [13], [28] were used to generate relative waypoints 
[9], [11], [12], [13] or velocities [10], [15] to guide navigation. 

IL methods are trained on datasets such as KITTI [10], 
GNM [9], [10], [11], [12], [14], SACSoN [9], [13] and are 
evaluated in indoor [9], [10], [11], [12], [13], [14], [15] and 
outdoor environments [9], [10], [11], [12], [13] using wheeled 
robots such as Vizbot [10], [11], [12], LoCoBot [9], [10], [11], 
[12], [13], [14], Clearpath Jackal [9], [11], [12], and 
quadrupeds such as Unitree Go1 [9], [12], [14] and Go2 [15]. 

B. Reinforcement Learning-based Methods 
Reinforcement learning-based methods consist of 1) 

hierarchical methods [16], [17] and 2) end-to-end methods 
[18], [19], [20], [21]. 

Hierarchical methods integrate separate modules for robot 
navigation. For example, in [16],  the system consists of a 
shared high-level policy that generates robot trunk velocities 
and a low-level whole-body model predictive control (MPC) 
policy to track the velocities using inverse kinematics [16]. 
The high-level policy uses a ConvNet to extract visual features 
from robot observations (RGB images), a robot embedding 
network to generate robot-specific embedding and an MLP to 
generate trunk velocities. In [17], a dynamics module is used 
to predict future robot poses given current image observation 
and a sequence of future actions, a general perception module 
was used to predict future rewards given current image 
observation and a sequence of future robot poses. The two 

modules were used in an MPC framework to plan robot 
velocities. 

End-to-end methods directly map the raw observations such 
as proprioception [18], [19], [20], [21], joint descriptions (e.g., 
torque limit, velocity limit) [19] to quadruped joint motor 
positions. They use randomly generated robots such as 
quadrupeds [18], [20], [21] or actual robot embodiments [16], 
[19]. 

These methods are trained using model-free RL methods 
such as SAC+AE [16], [29] and Proximal Policy Optimization 
(PPO) [18], [19], [20], [21], [30] or model-based RL using 
MPC and cross-entropy method [17], [31]. 

They were deployed on wheeled robots such as Yujin 
Kobuki [17], Clearpath Jackal [17] and quadrupeds such as 
Unitree Aliengo [16], [20], [21], A1 [16], [18], [19], Go1 [20], 
[21], Go2 [21], MIT Mini Cheetah [18], CUHK Sirius [18], 
MAB Honey Badger [19] and tested in real-world indoor [16], 
[18], [20], [21] and outdoor environments [17], [19], [20].  

C. Summary of Limitations 
The IL-based methods have been able to learn navigation 

skills from heterogeneous datasets. However, they still rely on 
robot-specific controllers to track the generated waypoints [9], 
[11] or velocities [10], [15]. This is particularly challenging 
for quadrupeds due to the complexity introduced by the high 
DOFs [22]. The RL-based methods have been able to learn 
navigation from interacting with the environments. However, 
they either lack the ability to plan trunk velocities for 
autonomous navigation [18], [19], [20], [21], still requires 
robot-specific dynamics module [17], or exhaustive search of 
embedding space to generalize to new robots [16]. 

To address the limitations, we propose X-Nav, the first end-
to-end method for cross-embodiment navigation for both 
wheeled and quadrupedal robots. 

III. PROBLEM FORMULATION 
The cross-embodiment navigation problem consists of a 

mobile robot 𝓇 ∈ ℛ!"##$ ∪ ℛ%&'( that needs to navigate from 
a known start location 𝑙) ∈ ℝ*  to a given goal location 𝑙+ ∈
ℝ*  in an unknown cluttered environment. ℛ!"##$ and ℛ%&'( 
represent the set of wheeled robots and quadrupeds 
respectively. The robot navigation is guided by visual 
observations which are represented by depth images 𝑜(#,-" ∈
ℝ.×0  from an onboard depth camera, goal location 𝑙+ , and 
proprioceptive observations o,123  from IMU and motor 
encoders.  

For 𝓇 ∈ ℛ!"##$ , proprioception 𝑜,123!"##$ ∈ ℝ*  represents its 
current linear and angular velocity, action 𝑎!"##$ ∈ ℝ* 
represents the target linear and angular velocity. For 𝓇 ∈
ℛ%&'( , proprioception 𝑜,123

%&'( ∈ ℝ45 represents the 
concatenation of robot trunk velocity 𝑜,123,7#$

%&'( ∈ ℝ4, projected 
gravity in the base frame 𝑜,123,+

%&'( ∈ ℝ4, current joint position 
𝑜,123,8,
%&'( ∈ ℝ9*  and joint velocity 𝑜,123,87

%&'( ∈ ℝ9* . The action 
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𝑎%&'( ∈ ℝ9* represent the 12 target joint angles corresponding 
to the hip, thigh and knee joints. 

The objective of the robot 𝓇  is to minimize the travel 
distance between 𝑙) and 𝑙+: 

min	𝔼/𝑑:'71𝑙), 𝑙+34, (1)
where d;<=(⋅,⋅) is a function measuring travel distance. 

IV. X-NAV ARCHITECTURE 
The proposed architecture consists of two stages: 1) Expert 

Policy Learning, and 2) General Policy Distillation, Fig. 2. In 
Stage 1, we randomize robot embodiments and train multiple 
expert navigation policies using privileged observations with 
reinforcement learning. In Stage 2, we first collect 
demonstrations using the trained expert policies from Stage 1, 
and then train a single general navigation policy on the 
demonstrations using imitation learning. 

A. Expert Policy Learning 
In this stage, we train 𝑁, = 3 expert policies 𝜋>!  ( 𝑖 =

1,… ,𝑁,) in simulation using RL with privileged observations. 
Each expert policy is trained on 4096 robots that share similar 
embodiments. Namely, the expert policies are separately 
trained for small-sized quadrupeds that are within 30 kg of 
total mass, large-sized quadrupeds and wheeled robots. The 

expert policies have access to privileged observations obtained 
from the simulator, including embodiment parameters and 
terrain height scans that cannot be obtained by the distilled 
general policy during deployment [32].  
1) Observations 

At each timestep 𝑡 (0 ≤ 𝑡 < 𝑇) of the navigation episode, 
the policy observation is 𝑜 = /𝑎, 𝑜,123, 𝑙+, λ, 𝑜,1274 , where 𝑎 
denotes the last robot action, λ = 1 − -

?
 denotes the time left in 

the current episode normalized to the range between 0 and 1, 
𝑇  is the maximum timesteps of the episode. 𝑜,127 =
[𝑜#@A3( , 𝑜)B':]  denotes the privileged observations which 
include embodiment parameters 𝑜#@A3( and terrain height 
scans 𝑜)B': obtained from a virtual sensor in the simulator for 
ground-truth terrain height measurement. For wheeled robots, 
embodiment parameters include mass and robot size. For 
quadrupeds, embodiment parameters include trunk size, trunk 
mass, thigh size, thigh mass, calf size, and calf mass. 
2) Embodiment Randomization 

In order to train an expert policy that can control robots of 
different but share similar embodiments, we implement 
embodiment randomization, where the RL policy is trained on 
randomly generated robot embodiments [18], [20]. This 
method ensures that real-world robot embodiments fall within 
the distribution of the randomly generated robots. Three types 
of robots are considered: small-sized quadrupeds, large-sized 
quadrupeds and wheeled robots. For each robot type, we 
design a corresponding template robot with predefined 
parameters to serve as a baseline. Using this template, we 
generate random robots by sampling their embodiment 
parameters, as listed in Table I. The motor PD gains are 
computed as [18]: 

𝑣-#@, ×
𝑚:#!

𝑚-#@,
× 𝑣, (2) 

where 𝑣  denotes the random value sampled based on the 
ranges in Table I, 𝑣-#@, denotes the PD gains of the template 
robot, 𝑚:#! denotes the total mass of the generated robot, and 
𝑚-#@, denotes the total mass of the template robot. 

 
Fig. 2. The proposed X-Nav framework consists of two stages: 1) Expert Policy Learning, and 2) General Policy Distillation. In the first stage, multiple expert 
policies are trained on randomly generated robot embodiments using reinforcement learning with privileged observations. In the second stage, the knowledge of 
expert policies is distilled into a single general policy using imitation learning. 

 

TABLE I 
PARAMETERS AND VALUE RANGES FOR EMBODIMENT RANDOMIZATION 
Type Parameters Range Parameters Range 

Small-Sized 
Quadrupeds 

Trunk length [0.24, 0.91] m Thigh mass [0.56, 1.69] kg 
Trunk width [0.16, 0.39] m Calf radius [0.02, 0.05] m 
Trunk height [0.06, 0.21] m Calf length [0.12, 0.39] m 
Trunk mass [4.8, 19.5] kg Calf mass [0.12, 0.39] kg 
Thigh radius [0.02, 0.05] m Motor P gain [0.7, 1.3] 
Thigh length [0.16, 0.46] m Motor D gain [0.7, 1.3] 

Large-Sized 
Quadrupeds 

Trunk length [0.56, 1.04] m Thigh mass [2, 5.2] kg 
Trunk width [0.28, 0.52] m Calf radius [0.02, 0.04] m 
Trunk height [0.14, 0.26] m Calf length [0.24, 0.36] m 
Trunk mass [24, 39] kg Calf mass [0.4, 0.6] kg 
Thigh radius [0.03, 0.05] m Motor P gain [0.5, 1.3] 
Thigh length [0.24, 0.39] m Motor D gain [0.5, 1.3] 

Wheeled 
Robots 

Base length [0.3, 0.8] m Base height [0.15, 0.3] m 
Base width [0.2, 0.65] m Base mass [5, 20] kg 
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3) Rewards 
The reward function is designed to encourage the robots to 

navigate to the goal location and avoid obstacles. It includes 
two components: 

r = 𝑟-')C + 𝑟1#+, (3) 
where 𝑟-')C  denotes the task rewards, and 𝑟1#+  denotes the 
regularization rewards. Namely, 𝑟-')C  are designed to 
encourage the robot to navigate to the goal location while 
avoiding collisions with obstacles. 𝑟1#+ are designed to ensure 
smooth and efficient movement by penalizing undesired 
behaviors (e.g. excessive oscillations, abrupt velocity changes) 
that may lead to unstable or inefficient navigation. Wheeled 
and quadrupedal robots share the same task rewards but 
different regularization rewards.  

The task rewards are defined as: 
𝑟-')C = 𝑟,3),)3D- + 𝑟,3),"'1( + 𝑟D!( + 𝑟)-':( + 𝑟B3$$2(# , (4) 

where 𝑟,3),)3D-  and 𝑟,3),"'1(  are two goal position tracking 
terms to encourage the robot to move to the goal location, 𝑟D!( 
is the term that encourages the robot to move forward, 𝑟)-':( 
is the term to encourage the robot to stand still at the goal 
location, 𝑟B3$$2(# denotes the collision penalty term to penalize 
any undesired collisions between the robot and obstacles. For 
wheeled robots, undesired collisions refer to contacts between 
robot base and obstacles; for quadrupeds, they refer to 
contacts between robot trunk and obstacles.  
𝑟,3),)3D-  and 𝑟,3),"'1(  are defined to reward the robot for 

moving close to the goal location as [33]. They are activated 
only near the end of the episode which allows the robot to 
explore in the beginning of the episode to avoid local minima: 

𝑟,3),()3D-/"'1() =
𝑐9,()3D-/"'1()

1 + S
𝑑+3'$

𝑐*,()3D-/"'1()
S
* ⋅ 𝟙(𝑡 > 𝑇 − 𝑇1), (5) 

where 𝑇1 denotes the duration of timesteps that these reward 
terms are activated, 𝟙 is an indicator function that outputs 1 if 
𝑡 > 𝑇 − 𝑇1  and 0 otherwise. 𝑑+3'$  denotes the distance 
between the robot and the goal location. 𝑐9,()3D-/"'1() , 
𝑐*,()3D-/"'1() are positive constants. 𝑐*,)3D-  is set to be larger 
than 𝑐*,"'1(  so that 𝑟,3),)3D-  provides dense rewards and 
𝑟,3),"'1(  reinforces the robot to accurately track the goal 
location. 

The forward term 𝑟D!(  is defined as [34] to encourage 
forward movement: 

𝑟D!( = 𝑐D!( ⋅ max YReLU^
𝑣H
𝑣@'H

_ ⋅ 𝟙1δ+3'$ < σ(21#B-3, 

𝟙1𝑑+3'$ < 𝜎"'1(3c, (6) 
where 𝑣H is the linear velocity of the robot trunk along the 𝑥 
axis, 𝑣@'H  is the maximum velocity of the robot, 𝑐D!(  is a 
positive constant. 𝛿+3'$  is the absolute angle difference 
between the robot’s heading direction and the goal location, 
and 𝜎(21#B-  is an angle threshold, within which the robot 
heading is considered in the correct navigation direction. The 
Rectified Linear Unit (ReLU) function is used to reward 
forward velocity and to normalize this reward value to be less 
than 1. 𝜎"'1( is a distance threshold, within which the robot is 
considered as reaching the goal and will receive a reward of 1. 

The standing term 𝑟)-':(  is used to enforce the robot to 
stand still at the goal location after reaching the goal: 
𝑟)-':( =

𝑐9,)-':(

1 + S
𝑜,123,7#$
𝑐*,)-':(

S
* ⋅ 𝟙(𝑡 > 𝑇 − 𝑇1) ⋅ 𝟙1𝑑+3'$ < 𝜎"'1(3, (7) 

where 𝑐9,)-':( ,	𝑐*,)-':( 	are positive constants. 
The collision penalty term is 𝑟B3$$2(# = cB3$$2(# ⋅ 𝟙B3$$2(# , 

where 𝑐B3$$2(# is a negative constant, 𝟙B3$$2(# indicates whether 
undesired collision happens between the robot and obstacles. 

The regularization rewards of quadrupeds 𝑟1#+
%&'( are defined 

as [35]: 
𝑟1#+
%&'( = 𝑐7"𝑣I

* + 𝑐J(𝜔HK* ) + 𝑐L‖𝜏‖* + 𝑐'̇‖𝑎̇‖* + 𝑐%̈‖𝑞̈‖* 

+𝑐'21o 
O

DP9

1𝑡'21,D − 0.53 + 𝑐D$'-r𝑜,123,+,HKr
*, (8) 

where 𝑣I is the linear velocity of the robot trunk along 𝑧 axis, 
ωHK represents the angular velocity of the robot trunk around 
𝑥 and 𝑦 axes, τ is the vector of 12 joint torques, 𝑎̇ is the action 
rate, 𝑞̈ is the joint acceleration, 𝑡'21,D  is the duration of time 
when foot 𝑓 is in the air (i.e., not in contact with the ground), 
𝑜,123,+,HK is the x, y component of the projected gravity vector 
in the base frame. 𝑐7" , 𝑐J , 𝑐L , 𝑐'̇ , 𝑐%̈ , 𝑐D$'-  are negative 
constants, 𝑐'21 is a positive constant. 

The regularization reward of wheeled robots 𝑟1#+!"##$  is 
defined as  𝑟1#+!"##$ = 𝑐'̇‖𝑎̇‖*. 
4) Curriculum Learning 

We use a game-inspired curriculum [35] to progressively 
train the policy to navigate from simple to complex 
environments, Fig. 3. The overall training environment 
consists of 384 subfields arranged in 6 rows and 64 columns, 
each measuring 10 × 10 m. Each subfield contains randomly 
generated obstacles with varying levels of difficulty. We use 
three types of obstacles: box, pyramid, and cylinder. Each 
obstacle type has two aspects of difficulty progression, with 6 
levels for each aspect: one progressively increases with 
obstacle density, while the other increases the obstacle size. In 
addition to obstacle difficulty, the terrain roughness (i.e., the 
maximum vertical deviation of the surface from a flat plane) 
within the subfields are also progressively increased from 0 to 
8 cm across the difficulty levels. 

At the beginning of training, all robots are randomly 
spawned in the lowest level. The progression of robots 
through difficulty levels is governed by two distance 
thresholds 𝜎B$3)#  and 𝜎D'1  (𝜎B$3)#  < 𝜎D'1 ). When the robot 
reaches the vicinity of the goal location at the end of an 
episode (i.e., 𝑑+3'$ < 𝜎B$3)#), the robot is promoted to a higher 
level. Conversely, if the robot fails to achieve the goal and the 
goal distance exceeds 𝜎D'1  (i.e.,  𝑑+3'$ > 𝜎D'1 ), the robot is 
demoted to the lower level. Otherwise, the robot would stay in 
the current level. The robot’s subfield level is updates as: 

𝐿 = z
𝑚𝑖𝑛(𝐿 + 1, 𝐿@'H)				  if 𝑑goal < 𝜎close 

max	(𝐿 − 1, 𝐿@2:)				 if 𝑑gool > 𝜎far 

𝐿				  otherwise 
, (9) 

where 𝐿 denotes the current level. 
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5) Reinforcement Learning 
We use a model-free RL algorithm PPO [30] to train the 

three expert policies. PPO is used due to its stability and 
efficiency in training. Each policy network 𝜋>!  is 
implemented as an MLP with (1024, 512, 256) units. The 
NVIDIA Isaac Sim simulator and Isaac Lab framework [36] 
are used for expert policy training. Each policy is trained using 
4096 randomly generated embodiments (Section IV.A.2) and 
curriculum learning (Section IV.A.4). Rough terrain is only 
applied for quadrupeds, the wheeled robot policy is trained on 
flat terrain. 

B. General Policy Distillation 
In this stage, we distill the trained expert policies πQ! , 1i =

1,… ,𝑁,3  into a single general policy πR  using imitation 
learning. First, we define a unified observation and action 
space for wheeled and quadrupedal robots. Then, we collect 
demonstrations from the expert policies trained in Stage 1, and 
preprocess them to fit the unified observation and action 
space. Finally, a single general policy πR  is trained to learn 
from the collected demonstrations. 
1) Unified Actions and Observations  

To create a unified action and observation space, we apply 
zero padding to ensure that the observation and action vectors 
have the same dimensionality across all robots. This padding 
ensures that the policy network can work on a uniform input 
and output size, regardless of the robot’s embodiment, 
enabling effective cross-embodiment learning.  

The unified action𝑎&:2 ,	 𝑎&:2 ∈ ℝ9O  is a 14-dimensional 
vector where the first two dimensions represent the linear and 
angular velocity of wheeled robots, while the last 12 
dimensions represent the target joint positions for quadrupeds. 

The unified observation 𝑜&:2 is: 
𝑜&:2 = /𝑙+, 𝑜,123&:2 , 𝑜"2)-&:2 , 𝑜1'K4, (10) 

where 𝑜,123&:2 ∈ ℝ45  denotes the unified proprioception. For 
wheeled robots, where joint position and velocity data are 
absent from proprioception 𝑜,123!"##$ , we pad the dimensions 
with zeros to match 𝑜,123

%&'(  to obtain 𝑜,123&:2 . 𝑜"2)-&:2 ∈ ℝ**5 
denotes the concatenation of the last 5 frames of actions 𝑎&:2 
and proprioception	𝑜,123&:2 .	𝑜1'K ∈ ℝ9*S	denotes a unified set of 
laser rays for distance measurement derived from the raw 
depth image 	𝑜(#,-".	 We convert 𝑜(#,-" to a set of 2D laser 
rays by projecting depth pixels onto a horizontal plane and 

extracting distance at evenly spaced angles within the camera 
field of view (FOV). The resulting laser scan is then 
interpolated into a unified format with a FOV of 90° , 
minimum and maximum measurement distance of 0.2 m and 8 
m, and number of laser rays of 128. This ensures consistency 
across robots with different camera intrinsic parameters. 
2) Demonstration Collection 

We collect 4096 demonstrations for each of the expert 
policies πQ! trained in Stage 1, totaling 12288 demonstrations. 
Each demonstration consists of a sequence of unified robot 
observations 𝑜&:2  and actions 𝑎&:2 , collected from a 
successful navigation episode within a randomly generated 
environment of the most difficult level used in Section IV.A.4).  
3) Navigation Action Chunking with Transformer 

We introduce Navigation Action Chunking with 
Transformer (Nav-ACT), a transformer model to learn cross-
embodiment navigation from demonstrations based on ACT 
[37]. Nav-ACT is used to generate the unified actions 𝑎&:2 
from the unified observations 𝑜&:2.  

Nav-ACT consists of 1) a set of encoders to convert the 
unified observations 𝑜&:2 into observation embeddings, and 2) 
a transformer decoder [27] to generate a sequence of unified 
actions conditioned on the observation embedding sequence. 

At each timestep 	𝑡 , the unified observation 𝑜&:2  is 
converted into an embedding 𝑜#@A#(  using three linear 
encoders. The laser ray observation 𝑜1'K , historical 
observation 𝑜"2)-&:2  proprioception 𝑜,123&:2  are each input to a 
linear layer to generate 𝑜#@A#(

1'K , 𝑜#@A#("2)-  and 𝑜#@A#(
,123 . These 

three embeddings are then concatenated into 𝑜#@A#( . The 
latest 𝐿3 steps of observation embeddings 𝑜#@A#(  are stacked 
to construct an observation sequence OT, which is used by the 
transformer decoder to generate an action sequence AT of 𝐿' 
actions. 

The transformer decoder takes as input a sequence of 𝐿' 
learnable positional embeddings 𝑃  and uses the observation 
embedding sequence OT  for cross-attention computation to 
generate a sequence of 𝐿' actions AT. The action sequence is 
generated in a single forward pass instead of auto-regression 
as the original transformer [27], which is more 
computationally efficient. 

Nav-ACT is trained using the mean squared error (MSE) 
loss: 

ℒU'7VWX? =
1
𝐿'
o 
Y#

2P9

r𝐀,1#(
(2) − 𝐀+-

(2)r
*
, (11) 

where  𝐀,1#( denotes the predicted action sequence generated 
by Nav-ACT, and 𝐀+- denotes the ground truth actions from 
the collected demonstrations. 
4) Inference 

At inference time, we employ different strategies for 
wheeled and quadrupedal robots:  for wheeled robots, we use 
temporal ensemble [37] to improve smoothness and avoid 
jerky movements. For quadrupeds, we disable temporal 
ensemble and only take the first action from the action 

   

   
(a) (b) (c) 

Fig. 3. The subfields used for expert policy learning. (a) cylinders, (b) boxes, 
(c) pyramids. 
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sequence to ensure fast adaptation to variations in the robot’s 
dynamics during navigation. 

For wheeled robots, at each timestep 𝑡, Nav-ACT generates 
a sequence of action predictions 𝐀-, then we take the last 𝐿' 
action sequence predictions 𝐀2 , 𝑖 = (𝑡 − 𝐿' + 1,… , 𝑡)  to 
retrieve the action predictions for the current timestep 𝑡 from 
each 𝐀2. Weighted average is applied to generate the action to 
execute as [37]:  

𝑎- =
∑  $
!%$&'#()!!W![-V2]

∑  $
!%$&'#()!!

, (12)  

where 𝑤2 = 𝑒𝑥𝑝(−𝑘 ∗ (𝑖 − 𝑡 + 𝐿' − 1))  and 𝑘  is a positive 
constant set to be 0.0001. 

For quadrupeds, at each timestep, we take the action from 
the latest action sequence, 𝑎- = 𝐀-[0]. 

V. TRAINING 
Training was done on a workstation with an NVIDIA RTX 

4090 GPU, an Intel Core i9-13900KF CPU and 32GB RAM.  

A. Expert Policy Learning 
Each of the expert policies was trained a batch size of 

24576 for 4000 epochs. Adam optimizer [38] was used with a 
learning rate of 0.001. Each expert policy took 2 hours to train. 
The hyperparameters used in reward function and curriculum 
learning are defined as Table II. 

B. General Policy Distillation 
The general policy, Nav-ACT was trained with a batch size 

of 256, learning rate of 0.0001 for 100 epochs. Adam 
optimizer [38] was used with weight decay of 0.001. We used 
an action sequence length 𝐿'  of 6, and an observation 
sequence length 𝐿3  of 4. Nav-ACT has 4 transformer layers 
and 4 heads with an embedding size of 256, totaling 5M 
parameters. Nav-ACT took 19 hours to train. 

VI. EXPERIMENTS 
We conducted four sets of experiments to evaluate the 

performance of X-Nav: 1) a simulated comparison study to 
evaluate the generalizability of X-Nav on unseen robot 
embodiments, 2) a simulated comparison study in unseen 
photorealistic environments, 3) a simulated ablation study to 
investigate the design choices of X-Nav, 4) a sim-to-real study 
to evaluate the generalizability of X-Nav in real-world 
environments. 

A. Comparison Study on Unseen Robot Embodiments 
The objective of this study is to evaluate the generalizability 

of X-Nav on unseen robot embodiments. We used 
commercially available robots that are unseen during the 
training of X-Nav, including 3 wheeled robots: Clearpath 
Jackal, Clearpath Dingo, iRobot Create3, and 3 quadrupeds: 
Unitree A1, Unitree Go2, ANYmal B. Each robot is equipped 
with a front-facing depth camera. 

We used two performance metrics for these experiments: 1) 
success rate (SR) of robots reaching goal locations, and 2) 
success weighted by normalized inverse path length (SPL) 
which measures the efficiency of the navigation path [39]:	
9
U*
∑  U*
2P9 𝑆2

ℓ!
@'H(𝓅!,ℓ!)

,	 where 𝑁L denotes the number of trials, ℓ2 
denotes the shortest path length from the start to goal location, 
𝓅2  denotes the actual robot path length, and 𝑆2  is a binary 
indicator of success in trial 𝑖. 

We randomly generated 100 environments that are unseen 
during training. Each environment is of 10 m × 10 m. They 
consist of the same types of obstacles as those used during 
training Section IV.A.4). Quadrupeds were tested on rough 
terrain and wheeled robots were tested on flat terrain. The start 
and goal locations were randomly sampled from the boundary 
of the environment. 
1) Comparison Methods: We compared with the following 
four imitation learning methods. They were all trained on the 
same dataset collected in Section IV. B. 2. 
Behavior Cloning (BC) [40]: The BC method uses the same 
encoders as our approach and an MLP to generate the next 
action. 
BC Transformer (BCT) [27]: The BCT method uses the 
same encoders as our approach and a transformer decoder to 
generate the next action. The transformer decoder takes the 
last 6 observations and actions as input to generate the next 
action. 
Diffusion Policy (DP) [28]: The DP method uses the EDM 
scheduler [41] and a transformer decoder to generate action 
sequence as [28]. DP used 80 steps for training and 10 steps 
for inference.  
Consistency Policy (CP) [42]: The CP method uses 
consistency trajectory model (CTM) [43] and transformer to 
generate actions. CP used DP as the teacher model and used 
one-step inference. 
2) Procedure: At the beginning of each trial, both robot start 
and goal locations were randomly sampled. A robot completed 
the task when the distance between the robot and goal location 
was within 0.5 m after the trial ended. A trial terminated when 
the total timesteps exceeded 750. Each timestep is 0.02s. We 
ran 3000 trials for each method and robot embodiment. 

TABLE III 
COMPARISON STUDY WITH UNSEEN ROBOT EMBODIMENTS 

 Go2 A1 ANYmal B Jackal Dingo Create3 
 SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL 

BC 63.6 0.55 70.2 0.60 45.1 0.40 57.5 0.51 31.2 0.24 46.7 0.36 
BCT 66.8 0.58 70.2 0.59 45.6 0.43 41.6 0.34 16.0 0.11 16.8 0.12 
DP 64.7 0.56 71.1 0.59 36.2 0.32 66.6 0.60 18.6 0.14 20.2 0.16 
CP 27.1 0.24 40.2 0.36 33.0 0.30 51.2 0.45 15.4 0.11 20.9 0.16 

X-Nav 69.1 0.60 71.6 0.61 59.6 0.52 90.4 0.84 83.5 0.76 93.1 0.85 

TABLE II 
HYPERPARAMETERS AND VALUES 

Hyperparameter Value Hyperparameter Value 
𝑐!,#$%& 20 𝑐'$(()*+ -40 
𝑐,,#$%& 5 𝑐-! -2 
𝑐!,./0* 15 𝑐1 -0.05 
𝑐,,./0* 0.5 𝑐2 -0.0002 
𝑇0 1.5 s 𝑐/̇ -0.01 
𝑇 8 s 𝑐4̈ -2.5e-7 

𝑣6/7 0.3 m/s 𝑐%(/& -5 
𝜎*)0+'& 1.75 rad 𝑐/)0 0.5 
𝜎./0* 0.5 m 𝜎'($#+ 0.5 m 
𝑐!,#&/8* 10 𝜎%/0 3.0 m 
𝑐,,#&/8* 0.2 𝑐%9* 2 
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3) Results: The SR, SPL of X-Nav and comparison methods 
are shown in Table III. In general, X-Nav was able to control 
different unseen robot embodiments and consistently 
outperformed BC, BCT, DP, CP in terms of SR and SPL. BC 
achieved lower SR and SPL than X-Nav across all 
embodiments because BC generates the next action solely 
based on the latest observation. It did not account for history 
of past observations, which are essential for spatial 
understanding for efficient navigation. BCT performed worse 
than X-Nav in terms of both SR and SPL because X-Nav 
implicitly predict future states by generating an action 
sequence while BCT only predicts the next action which can 
lead to suboptimal trajectory for navigation. DP achieved 
lower SR and SPL than X-Nav because DP’s iterative 
denoising is not suitable for high-frequency tasks like 
navigation [28]. Additionally, the inference of DP is 
computationally intensive. Though it has been used for 
quadruped locomotion task [44], specialized hardware and 
software acceleration are required to deploy the model in real-
time, making it less practical for general navigation 
applications. CP, on the other hand, has faster inference speed 
than DP by directly generating the denoised action through 
one single forward pass. However, CP achieved the lowest SR 
and SPL for quadrupeds and worse SR and SPL for wheeled 
robots when compared with X-Nav. This can be attributed to 
CP’s inability to handle the high-frequency control demands 
of quadrupeds, which require rapid action updates to maintain 
stability. 

B. Comparison Study in Unseen Photorealistic Environments 
The objective of this study is to evaluate the generalizability 

of X-Nav in unseen photorealistic environments. We used 
Matterport3D (MP3D) dataset [45] that contain 3D mesh of 
real-world indoor environments. Specifically, four houses 
from the MP3D dataset were loaded into Isaac Sim for the 
experiments, Fig. 4. The four houses have an average size of 
22 × 25 m. In each house, we randomly generated 20 pairs of 
start and goal locations. We performed 200 trials in each 
environment for all methods and all robots. 
1) Results: The results are shown in Table IV. X-Nav achieved 
zero-shot transfer to unseen photorealistic environments, 
outperforming BC, BCT, DP, CP across all embodiments. 
This generalization to environments that are out of the training 
distribution can be primarily attributed to the use of depth 

images as input, which are robust to variations in lighting and 
texture, allowing the model to focus on spatial geometry and 
obstacles.  

C. Ablation Study 
We conducted an ablation study to evaluate the impact of 

the design choices of X-Nav. 
1) Variants: We considered the following variants of X-Nav: 
X-Nav with L1 Loss: The Nav-ACT was trained using L1 
loss as the original ACT [37]. 
X-Nav with Executing Chunk (EC): It executed the entire 
predicted action sequence before predicting new action 
sequences.  
X-Nav without Temporal Ensemble: It planed an action 
sequence at each timestep and always executed the first action 
from the current predicted sequence without temporal 
ensemble. 
X-Nav with Full Temporal Ensemble (FTE): It applied TE 
to both wheeled and quadrupedal robots at inference time. 

We conducted 3000 trials for each method using the Unitree 
Go2 and Clearpath Jackal. 
2) Results: The results are shown in Table V. X-Nav achieved 
overall the highest SR and SPL among all variants. X-Nav w 
L1 performed worse than X-Nav for both Go2 and Jackal 
because L2 loss penalizes larger errors more heavily, 
encouraging smoother navigation action predictions. For 
quadrupeds, X-Nav achieved higher SR and SPL compared to 
X-Nav w EC and X-Nav w FTE, indicating that that unlike 
manipulation tasks that executing an action chunk helps 

TABLE IV 
COMPARISON STUDY IN UNSEEN PHOTOREALISTIC ENVIRONMENTS 

 Go2 A1 ANYmal B Jackal Dingo Create3 
 SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL 

BC 54.1 0.44 63.7 0.53 43.9 0.41 57.3 0.46 45.1 0.41 55.9 0.46 
BCT 55.8 0.49 67.5 0.61 41.8 0.39 54.6 0.45 47. 0.43 54.2 0.43 
DP 56.3 0.48 68.1 0.58 48.1 0.41 52.2 0.44 42.8 0.37 51.0 0.42 
CP 31.5 0.34 52.4 0.47 22.1 0.18 53.7 0.44 47.6 0.43 57.3 0.48 

X-Nav 63.5 0.54 70.8 0.65 51.2 0.47 80.3 0.72 78.7 0.69 83.8 0.72 
 TABLE V 

ABLATION STUDY 
 Go2 Jackal 
 SR SPL SR SPL 

X-Nav w L1 55.3 0.44 85.4 0.78 
X-Nav w EC 41.0 0.36 89.1 0.82 
X-Nav w/o TE 69.1 0.60 74.9 0.65 
X-Nav w FTE 42.7 0.38 90.4 0.84 
X-Nav 69.1 0.60 90.4 0.84 
 

 

(a) (b) 
Fig. 4. (a) Top view of photorealistic indoor environments from MP3D 
dataset, (b) Jackal and Go2 deployed inside the environments.  

 

 
Fig. 5. Visualization of X-Nav deployed on the Jackal (top) and the 
TurtleBot2 (bottom) in indoor environments. The Jackal robot is equipped 
with a ZED 2 camera and TurtleBot2 is equipped with a Kinect camera. 
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mitigate compound errors [37], quadruped navigation requires 
more frequent planning to maintain stability due to the high 
DOFs. On the other hand, for wheeled robots, X-Nav achieved 
higher SR and SPL than X-Nav w EC and X-Nav w/o TE, 
showing that action chunking and temporal ensemble 
improved wheeled robot navigation. This is because wheeled 
robots have simpler motion dynamics, which could benefit 
from smoother and more consistent motion. 

D. Sim-to-Real Study 
We conducted a sim-to-real study to evaluate the 

generalizability of X-Nav in real-world indoor environments, 
including hallways with obstacles, corners, and doorways, Fig. 
5. We used two wheeled robots: Clearpath Jackal and 
TurtleBot2. The Jackal robot was equipped with a ZED 2 
camera and TurtleBot2 was equipped with a Kinect camera to 
obtain depth images for navigation. Both robots operated on 
the Robot Operating System (ROS) Noetic. X-Nav was 
deployed on the two robots without any additional training, 
demonstrating its strong zero-shot transfer capabilities by 
successfully adapting to distinct robot embodiments, camera 
configurations, and environments. A video of X-Nav deployed 
on various robots in both the simulated and real-world 
environments is provided on our YouTube channel at xxxxx. 

VII. CONCLUSION 
In this paper, we present a novel two-stage learning 

framework, X-Nav, to address the problem of cross-
embodiment navigation for both wheeled and quadrupedal 
robots. The first stage utilized reinforcement learning with 
privileged observations to train multiple expert policies 
tailored to specific groups of embodiments. The second stage 
distilled these expert policies into a single general policy using 
a transformer model, Nav-ACT, which operates on a unified 
observation and action space. Through extensive simulated 
experiments, we demonstrated the effectiveness of X-Nav in 
zero-shot transfer to unseen robot embodiments and 
photorealistic environments, outperforming SOTA learning 
methods. An Ablation study validated our design choices and 
inference strategy. The real-world experiments showed the 
generalizability of X-Nav in complex indoor environments. 
Future work will extend X-Nav to more robot types such as 
humanoid robots, and object-goal navigation to expand its 
applicability. 
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