
1

X-Nav: Learning Cross-Embodiment Navigation for
Wheeled and Quadrupedal Robots

Haitong Wang, Aaron Hao Tan, Student Member, IEEE, Angus Fung, Student Member, IEEE, and Goldie Nejat,

Member, IEEE

Abstract—Existing navigation methods are primarily designed

for specific robot embodiments, limiting their generalizability
across diverse robot platforms. In this paper, we introduce X-
Nav, a novel framework for cross-embodiment navigation where
a single unified policy can be deployed across various
embodiments for both wheeled and quadrupedal robots. X-Nav
consists of two learning stages: 1) multiple expert policies are
trained using reinforcement learning with privileged
observations using a wide range of randomly generated
embodiments; 2) a single general policy is distilled from the
expert policies via navigation action chunking with transformer
(Nav-ACT). The unified policy directly maps visual and
proprioceptive observations to low-level control commands,
enabling generalization to novel robot embodiments. Simulated
experiments demonstrated that X-Nav can effectively achieve
zero-shot transfer to unseen embodiments and unseen
photorealistic environments. An ablation study is conducted to
evaluate the design choices of X-Nav. Furthermore, a sim-to-real
study was conducted to validate the generalizability of X-Nav to
real-world environments.

I. INTRODUCTION
obot navigation in diverse and challenging
environments is crucial for mobile robots to be able to
perform tasks such as detection and search [1], [2],

[3], exploration in unknown environments [4], [5], and
assistive services in healthcare settings [6]. However, existing
robot navigation methods are typically designed for very
specific robot embodiments that consider only their mobilities,
degrees-of-freedom (DOFs) and sensory configurations [7].
This embodiment-specific design limits generalization to robot
deployment across multiple robot embodiments. In this paper,
we address the problem of cross-embodiment navigation
where a single generalized navigation policy can be deployed
on a wide range of robot embodiments. In particular, we
consider the visual point-goal navigation problem where a
mobile robot is required to navigate to a target goal position
using visual observations (i.e., depth images) obtained from an
onboard camera [8].

Cross-embodiment navigation methods have mainly used
either imitation learning (IL) [9], [10], [11], [12], [13], [14],
[15], or reinforcement learning (RL) [16], [17], [18], [19],

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and in part by the Canada Research
Chairs program (CRC). (Corresponding author: Haitong Wang.)

The authors are with the Autonomous Systems and Biomechatronics
Laboratory (ASBLab), Department of Mechanical and Engineering,
University of Toronto, Toronto, ON M5S 3G8, Canada (e-mail:
haitong.wang@mail.utoronto.ca; aaronhao.tan@utoronto.ca;
angus.fung@mail.utoronto.ca; nejat@mie.utoronto.ca.

[20], [21]. In particular, IL methods learn a navigation policy
from datasets collected from heterogeneous robot platforms
(e.g., TurtleBot2, Jackal, Spot) and use visual observations to
extract spatial and embodiment features to predict robot
waypoints or velocities. On-the-other-hand, RL methods learn
to navigate by training on diverse robot embodiments,
including randomly generated robots or off-the-shelf robots.
They use proprioceptive (e.g., joint angles, joint velocities)
and/or visual observations as input to implicitly infer
embodiments for robot velocities or joint position generation.
However, these aforementioned methods are limited by 1)
their reliance on embodiment-specific modules to track the
predicted waypoints or velocities [9], [10], [11], [12], [13],
[14], [15], which is particularly challenging to achieve
especially for quadrupeds due to the high DOFs [22]; 2) their
focus on locomotion where the methods only learn to track
given velocity commands but lack the capability to plan
velocities for visual navigation [18], [19], [20], [21].

To address the above limitations, in this paper, we propose
X-Nav, a novel two-stage learning framework for cross-
embodiment navigation. Our approach is end-to-end that it
directly maps from visual and proprioceptive observations to
low-level control commands (i.e., velocities for wheeled
robots, joint positions for quadrupeds), without relying on
embodiment-specific modules to plan velocities/waypoints or
to track them. In the first stage, we use RL with privileged
observations to train multiple expert policies on randomly
generated robot embodiments, enabling each policy to acquire
navigation skills optimized for a group of similar robot

R

Fig. 1. X-Nav trains a single general navigation policy using randomly
generated robot embodiments, which can be deployed across a variety of
commercially available robots. X-Nav is the first end-to-end cross-
embodiment navigation model for both wheeled and quadrupedal robots.

2

embodiments (e.g., wheeled robots, quadrupeds). In the
second stage, the expert policies are distilled into a single
general policy using a transformer model with a unified
observation and action space. The key contributions of this
work include:

1) the development of the first end-to-end cross-
embodiment navigation approach for both wheeled and
quadrupedal robots.

 2) the introduction of a novel two-stage learning
framework that integrates expert policy learning with general
policy distillation, enabling zero-shot transfer to unseen robots
and real-world environments.

II. RELATED WORKS
We discuss the existing works on cross-embodiment

navigation that have used: 1) imitation learning (IL) [9], [10],
[11], [12], [13], [14], [15] and 2) reinforcement learning [16],
[17], [18], [19], [20], [21].

A. Imitation Learning-based Methods
Imitation learning-based methods learn a cross-embodiment

navigation policy from training on datasets collected from
heterogeneous robot platforms. These methods take as input
robot current visual observations (i.e., RGB images) and goal
images [9], [10], [11], [12], [13], [14], [15] and use visual
encoders such as custom ConvNets [10], MobileNetv2 [11],
[23], EfficientNet [9], [12], [13], [24], ResNet [14], [25],
DINOv2 [15], [26] to extract spatial features from the input
images. Fully connected layers (FCLs) [10], [11], [15],
transformer blocks, [9], [12], [13], [14], [27], diffusion action
heads [9], [13], [28] were used to generate relative waypoints
[9], [11], [12], [13] or velocities [10], [15] to guide navigation.

IL methods are trained on datasets such as KITTI [10],
GNM [9], [10], [11], [12], [14], SACSoN [9], [13] and are
evaluated in indoor [9], [10], [11], [12], [13], [14], [15] and
outdoor environments [9], [10], [11], [12], [13] using wheeled
robots such as Vizbot [10], [11], [12], LoCoBot [9], [10], [11],
[12], [13], [14], Clearpath Jackal [9], [11], [12], and
quadrupeds such as Unitree Go1 [9], [12], [14] and Go2 [15].

B. Reinforcement Learning-based Methods
Reinforcement learning-based methods consist of 1)

hierarchical methods [16], [17] and 2) end-to-end methods
[18], [19], [20], [21].

Hierarchical methods integrate separate modules for robot
navigation. For example, in [16], the system consists of a
shared high-level policy that generates robot trunk velocities
and a low-level whole-body model predictive control (MPC)
policy to track the velocities using inverse kinematics [16].
The high-level policy uses a ConvNet to extract visual features
from robot observations (RGB images), a robot embedding
network to generate robot-specific embedding and an MLP to
generate trunk velocities. In [17], a dynamics module is used
to predict future robot poses given current image observation
and a sequence of future actions, a general perception module
was used to predict future rewards given current image
observation and a sequence of future robot poses. The two

modules were used in an MPC framework to plan robot
velocities.

End-to-end methods directly map the raw observations such
as proprioception [18], [19], [20], [21], joint descriptions (e.g.,
torque limit, velocity limit) [19] to quadruped joint motor
positions. They use randomly generated robots such as
quadrupeds [18], [20], [21] or actual robot embodiments [16],
[19].

These methods are trained using model-free RL methods
such as SAC+AE [16], [29] and Proximal Policy Optimization
(PPO) [18], [19], [20], [21], [30] or model-based RL using
MPC and cross-entropy method [17], [31].

They were deployed on wheeled robots such as Yujin
Kobuki [17], Clearpath Jackal [17] and quadrupeds such as
Unitree Aliengo [16], [20], [21], A1 [16], [18], [19], Go1 [20],
[21], Go2 [21], MIT Mini Cheetah [18], CUHK Sirius [18],
MAB Honey Badger [19] and tested in real-world indoor [16],
[18], [20], [21] and outdoor environments [17], [19], [20].

C. Summary of Limitations
The IL-based methods have been able to learn navigation

skills from heterogeneous datasets. However, they still rely on
robot-specific controllers to track the generated waypoints [9],
[11] or velocities [10], [15]. This is particularly challenging
for quadrupeds due to the complexity introduced by the high
DOFs [22]. The RL-based methods have been able to learn
navigation from interacting with the environments. However,
they either lack the ability to plan trunk velocities for
autonomous navigation [18], [19], [20], [21], still requires
robot-specific dynamics module [17], or exhaustive search of
embedding space to generalize to new robots [16].

To address the limitations, we propose X-Nav, the first end-
to-end method for cross-embodiment navigation for both
wheeled and quadrupedal robots.

III. PROBLEM FORMULATION
The cross-embodiment navigation problem consists of a

mobile robot 𝓇 ∈ ℛ!"##$ ∪ ℛ%&'(that needs to navigate from
a known start location 𝑙) ∈ ℝ* to a given goal location 𝑙+ ∈
ℝ* in an unknown cluttered environment. ℛ!"##$ and ℛ%&'(
represent the set of wheeled robots and quadrupeds
respectively. The robot navigation is guided by visual
observations which are represented by depth images 𝑜(#,-" ∈
ℝ.×0 from an onboard depth camera, goal location 𝑙+ , and
proprioceptive observations o,123 from IMU and motor
encoders.

For 𝓇 ∈ ℛ!"##$, proprioception 𝑜,123!"##$ ∈ ℝ* represents its
current linear and angular velocity, action 𝑎!"##$ ∈ ℝ*
represents the target linear and angular velocity. For 𝓇 ∈
ℛ%&'(, proprioception 𝑜,123

%&'(∈ ℝ45 represents the
concatenation of robot trunk velocity 𝑜,123,7#$

%&'(∈ ℝ4, projected
gravity in the base frame 𝑜,123,+

%&'(∈ ℝ4, current joint position
𝑜,123,8,
%&'(∈ ℝ9* and joint velocity 𝑜,123,87

%&'(∈ ℝ9* . The action

3

𝑎%&'(∈ ℝ9* represent the 12 target joint angles corresponding
to the hip, thigh and knee joints.

The objective of the robot 𝓇 is to minimize the travel
distance between 𝑙) and 𝑙+:

min	𝔼/𝑑:'71𝑙), 𝑙+34, (1)
where d;<=(⋅,⋅) is a function measuring travel distance.

IV. X-NAV ARCHITECTURE
The proposed architecture consists of two stages: 1) Expert

Policy Learning, and 2) General Policy Distillation, Fig. 2. In
Stage 1, we randomize robot embodiments and train multiple
expert navigation policies using privileged observations with
reinforcement learning. In Stage 2, we first collect
demonstrations using the trained expert policies from Stage 1,
and then train a single general navigation policy on the
demonstrations using imitation learning.

A. Expert Policy Learning
In this stage, we train 𝑁, = 3 expert policies 𝜋>! (𝑖 =

1,… ,𝑁,) in simulation using RL with privileged observations.
Each expert policy is trained on 4096 robots that share similar
embodiments. Namely, the expert policies are separately
trained for small-sized quadrupeds that are within 30 kg of
total mass, large-sized quadrupeds and wheeled robots. The

expert policies have access to privileged observations obtained
from the simulator, including embodiment parameters and
terrain height scans that cannot be obtained by the distilled
general policy during deployment [32].
1) Observations

At each timestep 𝑡 (0 ≤ 𝑡 < 𝑇) of the navigation episode,
the policy observation is 𝑜 = /𝑎, 𝑜,123, 𝑙+, λ, 𝑜,1274 , where 𝑎
denotes the last robot action, λ = 1 − -

?
 denotes the time left in

the current episode normalized to the range between 0 and 1,
𝑇 is the maximum timesteps of the episode. 𝑜,127 =
[𝑜#@A3(, 𝑜)B':] denotes the privileged observations which
include embodiment parameters 𝑜#@A3(and terrain height
scans 𝑜)B': obtained from a virtual sensor in the simulator for
ground-truth terrain height measurement. For wheeled robots,
embodiment parameters include mass and robot size. For
quadrupeds, embodiment parameters include trunk size, trunk
mass, thigh size, thigh mass, calf size, and calf mass.
2) Embodiment Randomization

In order to train an expert policy that can control robots of
different but share similar embodiments, we implement
embodiment randomization, where the RL policy is trained on
randomly generated robot embodiments [18], [20]. This
method ensures that real-world robot embodiments fall within
the distribution of the randomly generated robots. Three types
of robots are considered: small-sized quadrupeds, large-sized
quadrupeds and wheeled robots. For each robot type, we
design a corresponding template robot with predefined
parameters to serve as a baseline. Using this template, we
generate random robots by sampling their embodiment
parameters, as listed in Table I. The motor PD gains are
computed as [18]:

𝑣-#@, ×
𝑚:#!

𝑚-#@,
× 𝑣, (2)

where 𝑣 denotes the random value sampled based on the
ranges in Table I, 𝑣-#@, denotes the PD gains of the template
robot, 𝑚:#! denotes the total mass of the generated robot, and
𝑚-#@, denotes the total mass of the template robot.

Fig. 2. The proposed X-Nav framework consists of two stages: 1) Expert Policy Learning, and 2) General Policy Distillation. In the first stage, multiple expert
policies are trained on randomly generated robot embodiments using reinforcement learning with privileged observations. In the second stage, the knowledge of
expert policies is distilled into a single general policy using imitation learning.

TABLE I
PARAMETERS AND VALUE RANGES FOR EMBODIMENT RANDOMIZATION
Type Parameters Range Parameters Range

Small-Sized
Quadrupeds

Trunk length [0.24, 0.91] m Thigh mass [0.56, 1.69] kg
Trunk width [0.16, 0.39] m Calf radius [0.02, 0.05] m
Trunk height [0.06, 0.21] m Calf length [0.12, 0.39] m
Trunk mass [4.8, 19.5] kg Calf mass [0.12, 0.39] kg
Thigh radius [0.02, 0.05] m Motor P gain [0.7, 1.3]
Thigh length [0.16, 0.46] m Motor D gain [0.7, 1.3]

Large-Sized
Quadrupeds

Trunk length [0.56, 1.04] m Thigh mass [2, 5.2] kg
Trunk width [0.28, 0.52] m Calf radius [0.02, 0.04] m
Trunk height [0.14, 0.26] m Calf length [0.24, 0.36] m
Trunk mass [24, 39] kg Calf mass [0.4, 0.6] kg
Thigh radius [0.03, 0.05] m Motor P gain [0.5, 1.3]
Thigh length [0.24, 0.39] m Motor D gain [0.5, 1.3]

Wheeled
Robots

Base length [0.3, 0.8] m Base height [0.15, 0.3] m
Base width [0.2, 0.65] m Base mass [5, 20] kg

4

3) Rewards
The reward function is designed to encourage the robots to

navigate to the goal location and avoid obstacles. It includes
two components:

r = 𝑟-')C + 𝑟1#+, (3)
where 𝑟-')C denotes the task rewards, and 𝑟1#+ denotes the
regularization rewards. Namely, 𝑟-')C are designed to
encourage the robot to navigate to the goal location while
avoiding collisions with obstacles. 𝑟1#+ are designed to ensure
smooth and efficient movement by penalizing undesired
behaviors (e.g. excessive oscillations, abrupt velocity changes)
that may lead to unstable or inefficient navigation. Wheeled
and quadrupedal robots share the same task rewards but
different regularization rewards.

The task rewards are defined as:
𝑟-')C = 𝑟,3),)3D- + 𝑟,3),"'1(+ 𝑟D!(+ 𝑟)-':(+ 𝑟B3$$2(# , (4)

where 𝑟,3),)3D- and 𝑟,3),"'1(are two goal position tracking
terms to encourage the robot to move to the goal location, 𝑟D!(
is the term that encourages the robot to move forward, 𝑟)-':(
is the term to encourage the robot to stand still at the goal
location, 𝑟B3$$2(# denotes the collision penalty term to penalize
any undesired collisions between the robot and obstacles. For
wheeled robots, undesired collisions refer to contacts between
robot base and obstacles; for quadrupeds, they refer to
contacts between robot trunk and obstacles.
𝑟,3),)3D- and 𝑟,3),"'1(are defined to reward the robot for

moving close to the goal location as [33]. They are activated
only near the end of the episode which allows the robot to
explore in the beginning of the episode to avoid local minima:

𝑟,3),()3D-/"'1() =
𝑐9,()3D-/"'1()

1 + S
𝑑+3'$

𝑐*,()3D-/"'1()
S
* ⋅ 𝟙(𝑡 > 𝑇 − 𝑇1), (5)

where 𝑇1 denotes the duration of timesteps that these reward
terms are activated, 𝟙 is an indicator function that outputs 1 if
𝑡 > 𝑇 − 𝑇1 and 0 otherwise. 𝑑+3'$ denotes the distance
between the robot and the goal location. 𝑐9,()3D-/"'1() ,
𝑐*,()3D-/"'1() are positive constants. 𝑐*,)3D- is set to be larger
than 𝑐*,"'1(so that 𝑟,3),)3D- provides dense rewards and
𝑟,3),"'1(reinforces the robot to accurately track the goal
location.

The forward term 𝑟D!(is defined as [34] to encourage
forward movement:

𝑟D!(= 𝑐D!(⋅ max YReLU^
𝑣H
𝑣@'H

_ ⋅ 𝟙1δ+3'$ < σ(21#B-3,

𝟙1𝑑+3'$ < 𝜎"'1(3c, (6)
where 𝑣H is the linear velocity of the robot trunk along the 𝑥
axis, 𝑣@'H is the maximum velocity of the robot, 𝑐D!(is a
positive constant. 𝛿+3'$ is the absolute angle difference
between the robot’s heading direction and the goal location,
and 𝜎(21#B- is an angle threshold, within which the robot
heading is considered in the correct navigation direction. The
Rectified Linear Unit (ReLU) function is used to reward
forward velocity and to normalize this reward value to be less
than 1. 𝜎"'1(is a distance threshold, within which the robot is
considered as reaching the goal and will receive a reward of 1.

The standing term 𝑟)-':(is used to enforce the robot to
stand still at the goal location after reaching the goal:
𝑟)-':(=

𝑐9,)-':(

1 + S
𝑜,123,7#$
𝑐*,)-':(

S
* ⋅ 𝟙(𝑡 > 𝑇 − 𝑇1) ⋅ 𝟙1𝑑+3'$ < 𝜎"'1(3, (7)

where 𝑐9,)-':(,	𝑐*,)-':(are positive constants.
The collision penalty term is 𝑟B3$$2(# = cB3$$2(# ⋅ 𝟙B3$$2(# ,

where 𝑐B3$$2(# is a negative constant, 𝟙B3$$2(# indicates whether
undesired collision happens between the robot and obstacles.

The regularization rewards of quadrupeds 𝑟1#+
%&'(are defined

as [35]:
𝑟1#+
%&'(= 𝑐7"𝑣I

* + 𝑐J(𝜔HK*) + 𝑐L‖𝜏‖* + 𝑐'̇‖𝑎̇‖* + 𝑐%̈‖𝑞̈‖*

+𝑐'21o 
O

DP9

1𝑡'21,D − 0.53 + 𝑐D$'-r𝑜,123,+,HKr
*, (8)

where 𝑣I is the linear velocity of the robot trunk along 𝑧 axis,
ωHK represents the angular velocity of the robot trunk around
𝑥 and 𝑦 axes, τ is the vector of 12 joint torques, 𝑎̇ is the action
rate, 𝑞̈ is the joint acceleration, 𝑡'21,D is the duration of time
when foot 𝑓 is in the air (i.e., not in contact with the ground),
𝑜,123,+,HK is the x, y component of the projected gravity vector
in the base frame. 𝑐7" , 𝑐J , 𝑐L , 𝑐'̇ , 𝑐%̈ , 𝑐D$'- are negative
constants, 𝑐'21 is a positive constant.

The regularization reward of wheeled robots 𝑟1#+!"##$ is
defined as 𝑟1#+!"##$ = 𝑐'̇‖𝑎̇‖*.
4) Curriculum Learning

We use a game-inspired curriculum [35] to progressively
train the policy to navigate from simple to complex
environments, Fig. 3. The overall training environment
consists of 384 subfields arranged in 6 rows and 64 columns,
each measuring 10 × 10 m. Each subfield contains randomly
generated obstacles with varying levels of difficulty. We use
three types of obstacles: box, pyramid, and cylinder. Each
obstacle type has two aspects of difficulty progression, with 6
levels for each aspect: one progressively increases with
obstacle density, while the other increases the obstacle size. In
addition to obstacle difficulty, the terrain roughness (i.e., the
maximum vertical deviation of the surface from a flat plane)
within the subfields are also progressively increased from 0 to
8 cm across the difficulty levels.

At the beginning of training, all robots are randomly
spawned in the lowest level. The progression of robots
through difficulty levels is governed by two distance
thresholds 𝜎B$3)# and 𝜎D'1 (𝜎B$3)# < 𝜎D'1). When the robot
reaches the vicinity of the goal location at the end of an
episode (i.e., 𝑑+3'$ < 𝜎B$3)#), the robot is promoted to a higher
level. Conversely, if the robot fails to achieve the goal and the
goal distance exceeds 𝜎D'1 (i.e., 𝑑+3'$ > 𝜎D'1), the robot is
demoted to the lower level. Otherwise, the robot would stay in
the current level. The robot’s subfield level is updates as:

𝐿 = z
𝑚𝑖𝑛(𝐿 + 1, 𝐿@'H)				 if 𝑑goal < 𝜎close

max	(𝐿 − 1, 𝐿@2:)				 if 𝑑gool > 𝜎far

𝐿				 otherwise
, (9)

where 𝐿 denotes the current level.

5

5) Reinforcement Learning
We use a model-free RL algorithm PPO [30] to train the

three expert policies. PPO is used due to its stability and
efficiency in training. Each policy network 𝜋>! is
implemented as an MLP with (1024, 512, 256) units. The
NVIDIA Isaac Sim simulator and Isaac Lab framework [36]
are used for expert policy training. Each policy is trained using
4096 randomly generated embodiments (Section IV.A.2) and
curriculum learning (Section IV.A.4). Rough terrain is only
applied for quadrupeds, the wheeled robot policy is trained on
flat terrain.

B. General Policy Distillation
In this stage, we distill the trained expert policies πQ! , 1i =

1,… ,𝑁,3 into a single general policy πR using imitation
learning. First, we define a unified observation and action
space for wheeled and quadrupedal robots. Then, we collect
demonstrations from the expert policies trained in Stage 1, and
preprocess them to fit the unified observation and action
space. Finally, a single general policy πR is trained to learn
from the collected demonstrations.
1) Unified Actions and Observations

To create a unified action and observation space, we apply
zero padding to ensure that the observation and action vectors
have the same dimensionality across all robots. This padding
ensures that the policy network can work on a uniform input
and output size, regardless of the robot’s embodiment,
enabling effective cross-embodiment learning.

The unified action𝑎&:2 ,	 𝑎&:2 ∈ ℝ9O is a 14-dimensional
vector where the first two dimensions represent the linear and
angular velocity of wheeled robots, while the last 12
dimensions represent the target joint positions for quadrupeds.

The unified observation 𝑜&:2 is:
𝑜&:2 = /𝑙+, 𝑜,123&:2 , 𝑜"2)-&:2 , 𝑜1'K4, (10)

where 𝑜,123&:2 ∈ ℝ45 denotes the unified proprioception. For
wheeled robots, where joint position and velocity data are
absent from proprioception 𝑜,123!"##$, we pad the dimensions
with zeros to match 𝑜,123

%&'(to obtain 𝑜,123&:2 . 𝑜"2)-&:2 ∈ ℝ**5
denotes the concatenation of the last 5 frames of actions 𝑎&:2
and proprioception	𝑜,123&:2 .	𝑜1'K ∈ ℝ9*S	denotes a unified set of
laser rays for distance measurement derived from the raw
depth image 	𝑜(#,-".	 We convert 𝑜(#,-" to a set of 2D laser
rays by projecting depth pixels onto a horizontal plane and

extracting distance at evenly spaced angles within the camera
field of view (FOV). The resulting laser scan is then
interpolated into a unified format with a FOV of 90° ,
minimum and maximum measurement distance of 0.2 m and 8
m, and number of laser rays of 128. This ensures consistency
across robots with different camera intrinsic parameters.
2) Demonstration Collection

We collect 4096 demonstrations for each of the expert
policies πQ! trained in Stage 1, totaling 12288 demonstrations.
Each demonstration consists of a sequence of unified robot
observations 𝑜&:2 and actions 𝑎&:2 , collected from a
successful navigation episode within a randomly generated
environment of the most difficult level used in Section IV.A.4).
3) Navigation Action Chunking with Transformer

We introduce Navigation Action Chunking with
Transformer (Nav-ACT), a transformer model to learn cross-
embodiment navigation from demonstrations based on ACT
[37]. Nav-ACT is used to generate the unified actions 𝑎&:2
from the unified observations 𝑜&:2.

Nav-ACT consists of 1) a set of encoders to convert the
unified observations 𝑜&:2 into observation embeddings, and 2)
a transformer decoder [27] to generate a sequence of unified
actions conditioned on the observation embedding sequence.

At each timestep 	𝑡 , the unified observation 𝑜&:2 is
converted into an embedding 𝑜#@A#(using three linear
encoders. The laser ray observation 𝑜1'K , historical
observation 𝑜"2)-&:2 proprioception 𝑜,123&:2 are each input to a
linear layer to generate 𝑜#@A#(

1'K , 𝑜#@A#("2)- and 𝑜#@A#(
,123 . These

three embeddings are then concatenated into 𝑜#@A#(. The
latest 𝐿3 steps of observation embeddings 𝑜#@A#(are stacked
to construct an observation sequence OT, which is used by the
transformer decoder to generate an action sequence AT of 𝐿'
actions.

The transformer decoder takes as input a sequence of 𝐿'
learnable positional embeddings 𝑃 and uses the observation
embedding sequence OT for cross-attention computation to
generate a sequence of 𝐿' actions AT. The action sequence is
generated in a single forward pass instead of auto-regression
as the original transformer [27], which is more
computationally efficient.

Nav-ACT is trained using the mean squared error (MSE)
loss:

ℒU'7VWX? =
1
𝐿'
o 
Y#

2P9

r𝐀,1#(
(2) − 𝐀+-

(2)r
*
, (11)

where 𝐀,1#(denotes the predicted action sequence generated
by Nav-ACT, and 𝐀+- denotes the ground truth actions from
the collected demonstrations.
4) Inference

At inference time, we employ different strategies for
wheeled and quadrupedal robots: for wheeled robots, we use
temporal ensemble [37] to improve smoothness and avoid
jerky movements. For quadrupeds, we disable temporal
ensemble and only take the first action from the action

(a) (b) (c)

Fig. 3. The subfields used for expert policy learning. (a) cylinders, (b) boxes,
(c) pyramids.

6

sequence to ensure fast adaptation to variations in the robot’s
dynamics during navigation.

For wheeled robots, at each timestep 𝑡, Nav-ACT generates
a sequence of action predictions 𝐀-, then we take the last 𝐿'
action sequence predictions 𝐀2 , 𝑖 = (𝑡 − 𝐿' + 1,… , 𝑡) to
retrieve the action predictions for the current timestep 𝑡 from
each 𝐀2. Weighted average is applied to generate the action to
execute as [37]:

𝑎- =
∑  $
!%$&'#()!!W![-V2]

∑  $
!%$&'#()!!

, (12)

where 𝑤2 = 𝑒𝑥𝑝(−𝑘 ∗ (𝑖 − 𝑡 + 𝐿' − 1)) and 𝑘 is a positive
constant set to be 0.0001.

For quadrupeds, at each timestep, we take the action from
the latest action sequence, 𝑎- = 𝐀-[0].

V. TRAINING
Training was done on a workstation with an NVIDIA RTX

4090 GPU, an Intel Core i9-13900KF CPU and 32GB RAM.

A. Expert Policy Learning
Each of the expert policies was trained a batch size of

24576 for 4000 epochs. Adam optimizer [38] was used with a
learning rate of 0.001. Each expert policy took 2 hours to train.
The hyperparameters used in reward function and curriculum
learning are defined as Table II.

B. General Policy Distillation
The general policy, Nav-ACT was trained with a batch size

of 256, learning rate of 0.0001 for 100 epochs. Adam
optimizer [38] was used with weight decay of 0.001. We used
an action sequence length 𝐿' of 6, and an observation
sequence length 𝐿3 of 4. Nav-ACT has 4 transformer layers
and 4 heads with an embedding size of 256, totaling 5M
parameters. Nav-ACT took 19 hours to train.

VI. EXPERIMENTS
We conducted four sets of experiments to evaluate the

performance of X-Nav: 1) a simulated comparison study to
evaluate the generalizability of X-Nav on unseen robot
embodiments, 2) a simulated comparison study in unseen
photorealistic environments, 3) a simulated ablation study to
investigate the design choices of X-Nav, 4) a sim-to-real study
to evaluate the generalizability of X-Nav in real-world
environments.

A. Comparison Study on Unseen Robot Embodiments
The objective of this study is to evaluate the generalizability

of X-Nav on unseen robot embodiments. We used
commercially available robots that are unseen during the
training of X-Nav, including 3 wheeled robots: Clearpath
Jackal, Clearpath Dingo, iRobot Create3, and 3 quadrupeds:
Unitree A1, Unitree Go2, ANYmal B. Each robot is equipped
with a front-facing depth camera.

We used two performance metrics for these experiments: 1)
success rate (SR) of robots reaching goal locations, and 2)
success weighted by normalized inverse path length (SPL)
which measures the efficiency of the navigation path [39]:	
9
U*
∑  U*
2P9 𝑆2

ℓ!
@'H(𝓅!,ℓ!)

,	 where 𝑁L denotes the number of trials, ℓ2
denotes the shortest path length from the start to goal location,
𝓅2 denotes the actual robot path length, and 𝑆2 is a binary
indicator of success in trial 𝑖.

We randomly generated 100 environments that are unseen
during training. Each environment is of 10 m × 10 m. They
consist of the same types of obstacles as those used during
training Section IV.A.4). Quadrupeds were tested on rough
terrain and wheeled robots were tested on flat terrain. The start
and goal locations were randomly sampled from the boundary
of the environment.
1) Comparison Methods: We compared with the following
four imitation learning methods. They were all trained on the
same dataset collected in Section IV. B. 2.
Behavior Cloning (BC) [40]: The BC method uses the same
encoders as our approach and an MLP to generate the next
action.
BC Transformer (BCT) [27]: The BCT method uses the
same encoders as our approach and a transformer decoder to
generate the next action. The transformer decoder takes the
last 6 observations and actions as input to generate the next
action.
Diffusion Policy (DP) [28]: The DP method uses the EDM
scheduler [41] and a transformer decoder to generate action
sequence as [28]. DP used 80 steps for training and 10 steps
for inference.
Consistency Policy (CP) [42]: The CP method uses
consistency trajectory model (CTM) [43] and transformer to
generate actions. CP used DP as the teacher model and used
one-step inference.
2) Procedure: At the beginning of each trial, both robot start
and goal locations were randomly sampled. A robot completed
the task when the distance between the robot and goal location
was within 0.5 m after the trial ended. A trial terminated when
the total timesteps exceeded 750. Each timestep is 0.02s. We
ran 3000 trials for each method and robot embodiment.

TABLE III
COMPARISON STUDY WITH UNSEEN ROBOT EMBODIMENTS

 Go2 A1 ANYmal B Jackal Dingo Create3
 SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL

BC 63.6 0.55 70.2 0.60 45.1 0.40 57.5 0.51 31.2 0.24 46.7 0.36
BCT 66.8 0.58 70.2 0.59 45.6 0.43 41.6 0.34 16.0 0.11 16.8 0.12
DP 64.7 0.56 71.1 0.59 36.2 0.32 66.6 0.60 18.6 0.14 20.2 0.16
CP 27.1 0.24 40.2 0.36 33.0 0.30 51.2 0.45 15.4 0.11 20.9 0.16

X-Nav 69.1 0.60 71.6 0.61 59.6 0.52 90.4 0.84 83.5 0.76 93.1 0.85

TABLE II
HYPERPARAMETERS AND VALUES

Hyperparameter Value Hyperparameter Value
𝑐!,#$%& 20 𝑐'$(()*+ -40
𝑐,,#$%& 5 𝑐-! -2
𝑐!,./0* 15 𝑐1 -0.05
𝑐,,./0* 0.5 𝑐2 -0.0002
𝑇0 1.5 s 𝑐/̇ -0.01
𝑇 8 s 𝑐4̈ -2.5e-7

𝑣6/7 0.3 m/s 𝑐%(/& -5
𝜎*)0+'& 1.75 rad 𝑐/)0 0.5
𝜎./0* 0.5 m 𝜎'($#+ 0.5 m
𝑐!,#&/8* 10 𝜎%/0 3.0 m
𝑐,,#&/8* 0.2 𝑐%9* 2

7

3) Results: The SR, SPL of X-Nav and comparison methods
are shown in Table III. In general, X-Nav was able to control
different unseen robot embodiments and consistently
outperformed BC, BCT, DP, CP in terms of SR and SPL. BC
achieved lower SR and SPL than X-Nav across all
embodiments because BC generates the next action solely
based on the latest observation. It did not account for history
of past observations, which are essential for spatial
understanding for efficient navigation. BCT performed worse
than X-Nav in terms of both SR and SPL because X-Nav
implicitly predict future states by generating an action
sequence while BCT only predicts the next action which can
lead to suboptimal trajectory for navigation. DP achieved
lower SR and SPL than X-Nav because DP’s iterative
denoising is not suitable for high-frequency tasks like
navigation [28]. Additionally, the inference of DP is
computationally intensive. Though it has been used for
quadruped locomotion task [44], specialized hardware and
software acceleration are required to deploy the model in real-
time, making it less practical for general navigation
applications. CP, on the other hand, has faster inference speed
than DP by directly generating the denoised action through
one single forward pass. However, CP achieved the lowest SR
and SPL for quadrupeds and worse SR and SPL for wheeled
robots when compared with X-Nav. This can be attributed to
CP’s inability to handle the high-frequency control demands
of quadrupeds, which require rapid action updates to maintain
stability.

B. Comparison Study in Unseen Photorealistic Environments
The objective of this study is to evaluate the generalizability

of X-Nav in unseen photorealistic environments. We used
Matterport3D (MP3D) dataset [45] that contain 3D mesh of
real-world indoor environments. Specifically, four houses
from the MP3D dataset were loaded into Isaac Sim for the
experiments, Fig. 4. The four houses have an average size of
22 × 25 m. In each house, we randomly generated 20 pairs of
start and goal locations. We performed 200 trials in each
environment for all methods and all robots.
1) Results: The results are shown in Table IV. X-Nav achieved
zero-shot transfer to unseen photorealistic environments,
outperforming BC, BCT, DP, CP across all embodiments.
This generalization to environments that are out of the training
distribution can be primarily attributed to the use of depth

images as input, which are robust to variations in lighting and
texture, allowing the model to focus on spatial geometry and
obstacles.

C. Ablation Study
We conducted an ablation study to evaluate the impact of

the design choices of X-Nav.
1) Variants: We considered the following variants of X-Nav:
X-Nav with L1 Loss: The Nav-ACT was trained using L1
loss as the original ACT [37].
X-Nav with Executing Chunk (EC): It executed the entire
predicted action sequence before predicting new action
sequences.
X-Nav without Temporal Ensemble: It planed an action
sequence at each timestep and always executed the first action
from the current predicted sequence without temporal
ensemble.
X-Nav with Full Temporal Ensemble (FTE): It applied TE
to both wheeled and quadrupedal robots at inference time.

We conducted 3000 trials for each method using the Unitree
Go2 and Clearpath Jackal.
2) Results: The results are shown in Table V. X-Nav achieved
overall the highest SR and SPL among all variants. X-Nav w
L1 performed worse than X-Nav for both Go2 and Jackal
because L2 loss penalizes larger errors more heavily,
encouraging smoother navigation action predictions. For
quadrupeds, X-Nav achieved higher SR and SPL compared to
X-Nav w EC and X-Nav w FTE, indicating that that unlike
manipulation tasks that executing an action chunk helps

TABLE IV
COMPARISON STUDY IN UNSEEN PHOTOREALISTIC ENVIRONMENTS

 Go2 A1 ANYmal B Jackal Dingo Create3
 SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL

BC 54.1 0.44 63.7 0.53 43.9 0.41 57.3 0.46 45.1 0.41 55.9 0.46
BCT 55.8 0.49 67.5 0.61 41.8 0.39 54.6 0.45 47. 0.43 54.2 0.43
DP 56.3 0.48 68.1 0.58 48.1 0.41 52.2 0.44 42.8 0.37 51.0 0.42
CP 31.5 0.34 52.4 0.47 22.1 0.18 53.7 0.44 47.6 0.43 57.3 0.48

X-Nav 63.5 0.54 70.8 0.65 51.2 0.47 80.3 0.72 78.7 0.69 83.8 0.72
 TABLE V

ABLATION STUDY
 Go2 Jackal
 SR SPL SR SPL

X-Nav w L1 55.3 0.44 85.4 0.78
X-Nav w EC 41.0 0.36 89.1 0.82
X-Nav w/o TE 69.1 0.60 74.9 0.65
X-Nav w FTE 42.7 0.38 90.4 0.84
X-Nav 69.1 0.60 90.4 0.84

(a) (b)
Fig. 4. (a) Top view of photorealistic indoor environments from MP3D
dataset, (b) Jackal and Go2 deployed inside the environments.

Fig. 5. Visualization of X-Nav deployed on the Jackal (top) and the
TurtleBot2 (bottom) in indoor environments. The Jackal robot is equipped
with a ZED 2 camera and TurtleBot2 is equipped with a Kinect camera.

8

mitigate compound errors [37], quadruped navigation requires
more frequent planning to maintain stability due to the high
DOFs. On the other hand, for wheeled robots, X-Nav achieved
higher SR and SPL than X-Nav w EC and X-Nav w/o TE,
showing that action chunking and temporal ensemble
improved wheeled robot navigation. This is because wheeled
robots have simpler motion dynamics, which could benefit
from smoother and more consistent motion.

D. Sim-to-Real Study
We conducted a sim-to-real study to evaluate the

generalizability of X-Nav in real-world indoor environments,
including hallways with obstacles, corners, and doorways, Fig.
5. We used two wheeled robots: Clearpath Jackal and
TurtleBot2. The Jackal robot was equipped with a ZED 2
camera and TurtleBot2 was equipped with a Kinect camera to
obtain depth images for navigation. Both robots operated on
the Robot Operating System (ROS) Noetic. X-Nav was
deployed on the two robots without any additional training,
demonstrating its strong zero-shot transfer capabilities by
successfully adapting to distinct robot embodiments, camera
configurations, and environments. A video of X-Nav deployed
on various robots in both the simulated and real-world
environments is provided on our YouTube channel at xxxxx.

VII. CONCLUSION
In this paper, we present a novel two-stage learning

framework, X-Nav, to address the problem of cross-
embodiment navigation for both wheeled and quadrupedal
robots. The first stage utilized reinforcement learning with
privileged observations to train multiple expert policies
tailored to specific groups of embodiments. The second stage
distilled these expert policies into a single general policy using
a transformer model, Nav-ACT, which operates on a unified
observation and action space. Through extensive simulated
experiments, we demonstrated the effectiveness of X-Nav in
zero-shot transfer to unseen robot embodiments and
photorealistic environments, outperforming SOTA learning
methods. An Ablation study validated our design choices and
inference strategy. The real-world experiments showed the
generalizability of X-Nav in complex indoor environments.
Future work will extend X-Nav to more robot types such as
humanoid robots, and object-goal navigation to expand its
applicability.

REFERENCES

[1] A. Fung, B. Benhabib, and G. Nejat, “Robots Autonomously Detecting
People: A Multimodal Deep Contrastive Learning Method Robust to
Intraclass Variations,” IEEE Robot. Autom. Lett., vol. 8, no. 6, pp.
3550–3557, Jun. 2023, doi: 10.1109/LRA.2023.3269306.

[2] A. Fung, B. Benhabib, and G. Nejat, “LDTrack: Dynamic People
Tracking by Service Robots Using Diffusion Models,” Int. J. Comput.
Vis., Jan. 2025, doi: 10.1007/s11263-024-02336-9.

[3] H. Wang, A. H. Tan, and G. Nejat, “NavFormer: A Transformer
Architecture for Robot Target-Driven Navigation in Unknown and
Dynamic Environments,” IEEE Robot. Autom. Lett., vol. 9, no. 8, pp.
6808–6815, Aug. 2024, doi: 10.1109/LRA.2024.3412638.

[4] A. H. Tan, F. P. Bejarano, Y. Zhu, R. Ren, and G. Nejat, “Deep
Reinforcement Learning for Decentralized Multi-Robot Exploration

With Macro Actions,” IEEE Robot. Autom. Lett., vol. 8, no. 1, pp. 272–
279, Jan. 2023, doi: 10.1109/LRA.2022.3224667.

[5] A. H. Tan, S. Narasimhan, and G. Nejat, “4CNet: A Confidence-Aware,
Contrastive, Conditional, Consistency Model for Robot Map Prediction
in Multi-Robot Environments,” Feb. 27, 2024, arXiv:
arXiv:2402.17904. Accessed: Mar. 04, 2024. [Online]. Available:
http://arxiv.org/abs/2402.17904

[6] N. Tyagi, D. Sharma, J. Singh, B. Sharma, and S. Narang, “Assistive
Navigation System for Visually Impaired and Blind People: A Review,”
in 2021 International Conference on Artificial Intelligence and Machine
Vision (AIMV), Sep. 2021, pp. 1–5. doi:
10.1109/AIMV53313.2021.9670951.

[7] J. Lee, M. Bjelonic, A. Reske, L. Wellhausen, T. Miki, and M. Hutter,
“Learning robust autonomous navigation and locomotion for wheeled-
legged robots,” Sci. Robot., vol. 9, no. 89, p. eadi9641, Apr. 2024, doi:
10.1126/scirobotics.adi9641.

[8] E. Wijmans et al., “DD-PPO: Learning Near-Perfect PointGoal
Navigators from 2.5 Billion Frames,” Nov. 2019, doi:
10.48550/arxiv.1911.00357.

[9] J. Yang et al., “Pushing the Limits of Cross-Embodiment Learning for
Manipulation and Navigation,” Feb. 29, 2024, arXiv: arXiv:2402.19432.
Accessed: May 16, 2024. [Online]. Available:
http://arxiv.org/abs/2402.19432

[10] N. Hirose, D. Shah, A. Sridhar, and S. Levine, “ExAug: Robot-
Conditioned Navigation Policies via Geometric Experience
Augmentation,” Oct. 13, 2022, arXiv: arXiv:2210.07450. Accessed:
May 17, 2024. [Online]. Available: http://arxiv.org/abs/2210.07450

[11] D. Shah, A. Sridhar, A. Bhorkar, N. Hirose, and S. Levine, “GNM: A
General Navigation Model to Drive Any Robot,” May 22, 2023, arXiv:
arXiv:2210.03370. Accessed: May 16, 2024. [Online]. Available:
http://arxiv.org/abs/2210.03370

[12] D. Shah et al., “ViNT: A Foundation Model for Visual Navigation”.
[13] A. Sridhar, D. Shah, C. Glossop, and S. Levine, “NoMaD: Goal Masked

Diffusion Policies for Navigation and Exploration,” Oct. 11, 2023,
arXiv: arXiv:2310.07896. Accessed: May 16, 2024. [Online]. Available:
http://arxiv.org/abs/2310.07896

[14] R. Doshi, H. Walke, O. Mees, S. Dasari, and S. Levine, “Scaling Cross-
Embodied Learning: One Policy for Manipulation, Navigation,
Locomotion and Aviation,” Aug. 21, 2024, arXiv: arXiv:2408.11812.
Accessed: Aug. 22, 2024. [Online]. Available:
http://arxiv.org/abs/2408.11812

[15] W. Liu et al., “X-MOBILITY: End-To-End Generalizable Navigation
via World Modeling,” Oct. 23, 2024, arXiv: arXiv:2410.17491.
Accessed: Oct. 24, 2024. [Online]. Available:
http://arxiv.org/abs/2410.17491

[16] J. Truong et al., “Learning Navigation Skills for Legged Robots with
Learned Robot Embeddings,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Prague, Czech
Republic: IEEE, Sep. 2021, pp. 484–491. doi:
10.1109/IROS51168.2021.9635911.

[17] K. Kang, G. Kahn, and S. Levine, “Hierarchically Integrated Models:
Learning to Navigate from Heterogeneous Robots,” Nov. 04, 2021,
arXiv: arXiv:2106.13280. Accessed: May 17, 2024. [Online]. Available:
http://arxiv.org/abs/2106.13280

[18] G. Feng et al., “GenLoco: Generalized Locomotion Controllers for
Quadrupedal Robots”.

[19] N. Bohlinger et al., “One Policy to Run Them All: an End-to-end
Learning Approach to Multi-Embodiment Locomotion”.

[20] Z. Luo et al., “MorAL: Learning Morphologically Adaptive
Locomotion Controller for Quadrupedal Robots on Challenging
Terrains,” IEEE Robot. Autom. Lett., vol. 9, no. 5, pp. 4019–4026, May
2024, doi: 10.1109/LRA.2024.3375086.

[21] F. Di Giuro, F. Zargarbashi, J. Cheng, D. Kang, B. Sukhija, and S.
Coros, “Meta-Reinforcement Learning for Universal Quadrupedal
Locomotion Control,” arXiv.org. Accessed: Aug. 24, 2024. [Online].
Available: https://arxiv.org/abs/2407.17502v1

[22] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Sci.
Robot., vol. 5, no. 47, p. eabc5986, Oct. 2020, doi:
10.1126/scirobotics.abc5986.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Mar. 21,
2019, arXiv: arXiv:1801.04381. Accessed: Oct. 30, 2024. [Online].
Available: http://arxiv.org/abs/1801.04381

9

[24] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks,” Sep. 11, 2020, arXiv:
arXiv:1905.11946. Accessed: Oct. 30, 2024. [Online]. Available:
http://arxiv.org/abs/1905.11946

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016,
pp. 770–778. doi: 10.1109/CVPR.2016.90.

[26] M. Oquab et al., “DINOv2: Learning Robust Visual Features without
Supervision,” Feb. 02, 2024, arXiv: arXiv:2304.07193. Accessed: Oct.
30, 2024. [Online]. Available: http://arxiv.org/abs/2304.07193

[27] A. Vaswani et al., “Attention is all you need,” Adv. Neural Inf. Process.
Syst., vol. 2017-Decem, pp. 5999–6009, 2017.

[28] C. Chi et al., “Diffusion Policy: Visuomotor Policy Learning via Action
Diffusion,” Mar. 14, 2024, arXiv: arXiv:2303.04137. Accessed: May
15, 2024. [Online]. Available: http://arxiv.org/abs/2303.04137

[29] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus,
“Improving Sample Efficiency in Model-Free Reinforcement Learning
from Images,” Jul. 09, 2020, arXiv: arXiv:1910.01741. Accessed: Mar.
20, 2023. [Online]. Available: http://arxiv.org/abs/1910.01741

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” Aug. 28, 2017, arXiv:
arXiv:1707.06347. Accessed: Jul. 27, 2024. [Online]. Available:
http://arxiv.org/abs/1707.06347

[31] R. Rubinstein, “The Cross-Entropy Method for Combinatorial and
Continuous Optimization,” Methodol. Comput. Appl. Probab., vol. 1,
no. 2, pp. 127–190, Sep. 1999, doi: 10.1023/A:1010091220143.

[32] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by
Cheating,” in Proceedings of the Conference on Robot Learning,
PMLR, May 2020, pp. 66–75. Accessed: May 30, 2023. [Online].
Available: https://proceedings.mlr.press/v100/chen20a.html

[33] J. Jin et al., “Resilient Legged Local Navigation: Learning to Traverse
with Compromised Perception End-to-End,” Oct. 05, 2023, arXiv:
arXiv:2310.03581. Accessed: May 21, 2024. [Online]. Available:
http://arxiv.org/abs/2310.03581

[34] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi, “Agile But Safe:
Learning Collision-Free High-Speed Legged Locomotion,” May 17,
2024, arXiv: arXiv:2401.17583. Accessed: May 21, 2024. [Online].
Available: http://arxiv.org/abs/2401.17583

[35] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to Walk in
Minutes Using Massively Parallel Deep Reinforcement Learning,” Aug.
19, 2022, arXiv: arXiv:2109.11978. Accessed: May 20, 2024. [Online].
Available: http://arxiv.org/abs/2109.11978

[36] M. Mittal et al., “Orbit: A Unified Simulation Framework for
Interactive Robot Learning Environments,” Feb. 16, 2024, arXiv:
arXiv:2301.04195. Accessed: Nov. 01, 2024. [Online]. Available:
http://arxiv.org/abs/2301.04195

[37] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning Fine-Grained
Bimanual Manipulation with Low-Cost Hardware,” Apr. 23, 2023,
arXiv: arXiv:2304.13705. Accessed: Aug. 23, 2024. [Online].
Available: http://arxiv.org/abs/2304.13705

[38] D. P. Kingma and J. Lei, “Adam: A Method for Stochastic
Optimization,” 2015.

[39] P. Anderson et al., “On Evaluation of Embodied Navigation Agents,”
Jul. 17, 2018, arXiv: arXiv:1807.06757. Accessed: Oct. 19, 2023.
[Online]. Available: http://arxiv.org/abs/1807.06757

[40] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Adv. Neural Inf. Process. Syst., vol. 1, 1988, Accessed: Nov.
19, 2024. [Online]. Available:
https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d4
3bbf5bbe87fb-Abstract.html

[41] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the Design
Space of Diffusion-Based Generative Models,” Oct. 11, 2022, arXiv:
arXiv:2206.00364. Accessed: Sep. 02, 2024. [Online]. Available:
http://arxiv.org/abs/2206.00364

[42] A. Prasad, K. Lin, J. Wu, L. Zhou, and J. Bohg, “Consistency Policy:
Accelerated Visuomotor Policies via Consistency Distillation,” May 13,
2024, arXiv: arXiv:2405.07503. Accessed: May 15, 2024. [Online].
Available: http://arxiv.org/abs/2405.07503

[43] D. Kim et al., “Consistency Trajectory Models: Learning Probability
Flow ODE Trajectory of Diffusion,” Mar. 30, 2024, arXiv:
arXiv:2310.02279. Accessed: Sep. 02, 2024. [Online]. Available:
http://arxiv.org/abs/2310.02279

[44] X. Huang et al., “DiffuseLoco: Real-Time Legged Locomotion Control
with Diffusion from Offline Datasets,” Apr. 30, 2024, arXiv:

arXiv:2404.19264. Accessed: May 18, 2024. [Online]. Available:
http://arxiv.org/abs/2404.19264

[45] A. Chang et al., “Matterport3D: Learning from RGB-D Data in Indoor
Environments,” Sep. 18, 2017, arXiv: arXiv:1709.06158. Accessed:
Nov. 19, 2024. [Online]. Available: http://arxiv.org/abs/1709.06158

